661 research outputs found

    This Time It's Personal: from PIM to the Perfect Digital Assistant

    No full text
    Interacting with digital PIM tools like calendars, to-do lists, address books, bookmarks and so on, is a highly manual, often repetitive and frequently tedious process. Despite increases in memory and processor power over the past two decades of personal computing, not much has changed in the way we engage with such applications. We must still manually decompose frequently performed tasks into multiple smaller, data specific processes if we want to be able to recall or reuse the information in some meaningful way. "Meeting with Yves at 5 in Stata about blah" breaks down into rigid, fixed semantics in separate applications: data to be recorded in calendar fields, address book fields and, as for the blah, something that does not necessarily exist as a PIM application data structure. We argue that a reason Personal Information Management tools may be so manual, and so effectively fragmented, is that they are not personal enough. If our information systems were more personal, that is, if they knew in a manner similar to the way a personal assistant would know us and support us, then our tools would be more helpful: an assistive PIM tool would gather together the necessary material in support of our meeting with Yves. We, therefore, have been investigating the possible paths towards PIM tools as tools that work for us, rather than tools that seemingly make us work for them. To that end, in the following sections we consider how we may develop a framework for PIM tools as "perfect digital assistants" (PDA). Our impetus has been to explore how, by considering the affordances of a Real World personal assistant, we can conceptualize a design framework, and from there a development program for a digital simulacrum of such an assistant that is not for some far off future, but for the much nearer term

    Evaluating the development of wearable devices, personal data assistants and the use of other mobile devices in further and higher education institutions

    Get PDF
    This report presents technical evaluation and case studies of the use of wearable and mobile computing mobile devices in further and higher education. The first section provides technical evaluation of the current state of the art in wearable and mobile technologies and reviews several innovative wearable products that have been developed in recent years. The second section examines three scenarios for further and higher education where wearable and mobile devices are currently being used. The three scenarios include: (i) the delivery of lectures over mobile devices, (ii) the augmentation of the physical campus with a virtual and mobile component, and (iii) the use of PDAs and mobile devices in field studies. The first scenario explores the use of web lectures including an evaluation of IBM's Web Lecture Services and 3Com's learning assistant. The second scenario explores models for a campus without walls evaluating the Handsprings to Learning projects at East Carolina University and ActiveCampus at the University of California San Diego . The third scenario explores the use of wearable and mobile devices for field trips examining San Francisco Exploratorium's tool for capturing museum visits and the Cybertracker field computer. The third section of the report explores the uses and purposes for wearable and mobile devices in tertiary education, identifying key trends and issues to be considered when piloting the use of these devices in educational contexts

    The history and future of digital health in the field of behavioral medicine.

    Get PDF
    Since its earliest days, the field of behavioral medicine has leveraged technology to increase the reach and effectiveness of its interventions. Here, we highlight key areas of opportunity and recommend next steps to further advance intervention development, evaluation, and commercialization with a focus on three technologies: mobile applications (apps), social media, and wearable devices. Ultimately, we argue that future of digital health behavioral science research lies in finding ways to advance more robust academic-industry partnerships. These include academics consciously working towards preparing and training the work force of the twenty first century for digital health, actively working towards advancing methods that can balance the needs for efficiency in industry with the desire for rigor and reproducibility in academia, and the need to advance common practices and procedures that support more ethical practices for promoting healthy behavior

    Toward a Theory of Consumer Interaction With Mobile Technology Devices

    Get PDF
    The purpose of this dissertation was to explore the phenomenon of consumer interaction with mobile technology devices (MTDs). MTDs include electronic “gadgets” such as personal digital assistants (PDAs) and smartphones that are carried and used frequently by consumers. The emphasis in this dissertation was on developing an explanatory framework to account for everyday experiences of MTD consumption. In light of limited consumer research on the pervasive phenomenon, an inductive, theory-building approach was taken, employing the constant comparative methodology of grounded theory (Glaser and Strauss 1967; Glaser 1978). Data was gathered primarily through in-depth interviews with 20 participants who had extensive familiarity with the phenomenon. Convergence on a “core category” of Cultivating the Self explained the majority of variance in participants‟ social psychological processes while interacting with MTDs. By Cultivating the Self, consumers interact intimately with mobile technology devices in myriad ways over time, investing “psychic energy” (Csikszentmihalyi and Rochberg-Halton 1981) into the products in order to actualize goals and therefore actualize themselves, all the while becoming closer to the devices, both figuratively and literally. The core category is comprised of three interrelated stages: Transitioning, Integrating and Bonding. By Transitioning to their devices, consumers undergo a fundamental and totalizing “ecological” change in their lives as they come to understand and assimilate interactions with MTDs. Through Integrating their devices, consumers select and align activities in their daily lives with capabilities that arise from interacting with their MTDs, “offloading” tasks to the products in a process that blurs the distinction between “personal” and “professional” lives. By Bonding, consumers make the products “their own” as they become increasingly proximate and intimate with their MTDs through customizing, personifying and interacting playfully with them. Extant theory was considered in extending properties of the core category, with special attention given to the ontological and epistemological differences between structuralist and interactionist paradigms underlying prior research on human-object relations. A symbolic interactionist view of human behavior was demonstrated as supporting emergent conceptualizations of the phenomenon. The interactionist approach and emergent theory developed through this dissertation provides support for the Service-Dominant Logic views currently evolving in contemporary marketing thought

    Ambient Assisted Living: Scoping Review of Artificial Intelligence Models, Domains, Technology, and Concerns

    Get PDF
    Background: Ambient assisted living (AAL) is a common name for various artificial intelligence (AI)—infused applications and platforms that support their users in need in multiple activities, from health to daily living. These systems use different approaches to learn about their users and make automated decisions, known as AI models, for personalizing their services and increasing outcomes. Given the numerous systems developed and deployed for people with different needs, health conditions, and dispositions toward the technology, it is critical to obtain clear and comprehensive insights concerning AI models used, along with their domains, technology, and concerns, to identify promising directions for future work. Objective: This study aimed to provide a scoping review of the literature on AI models in AAL. In particular, we analyzed specific AI models used in AАL systems, the target domains of the models, the technology using the models, and the major concerns from the end-user perspective. Our goal was to consolidate research on this topic and inform end users, health care professionals and providers, researchers, and practitioners in developing, deploying, and evaluating future intelligent AAL systems. Methods: This study was conducted as a scoping review to identify, analyze, and extract the relevant literature. It used a natural language processing toolkit to retrieve the article corpus for an efficient and comprehensive automated literature search. Relevant articles were then extracted from the corpus and analyzed manually. This review included 5 digital libraries: IEEE, PubMed, Springer, Elsevier, and MDPI. Results: We included a total of 108 articles. The annual distribution of relevant articles showed a growing trend for all categories from January 2010 to July 2022. The AI models mainly used unsupervised and semisupervised approaches. The leading models are deep learning, natural language processing, instance-based learning, and clustering. Activity assistance and recognition were the most common target domains of the models. Ambient sensing, mobile technology, and robotic devices mainly implemented the models. Older adults were the primary beneficiaries, followed by patients and frail persons of various ages. Availability was a top beneficiary concern. Conclusions: This study presents the analytical evidence of AI models in AAL and their domains, technologies, beneficiaries, and concerns. Future research on intelligent AAL should involve health care professionals and caregivers as designers and users, comply with health-related regulations, improve transparency and privacy, integrate with health care technological infrastructure, explain their decisions to the users, and establish evaluation metrics and design guidelines. Trial Registration: PROSPERO (International Prospective Register of Systematic Reviews) CRD42022347590; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022347590This work was part of and supported by GoodBrother, COST Action 19121—Network on Privacy-Aware Audio- and Video-Based Applications for Active and Assisted Living

    Mobile Big Data Analytics in Healthcare

    Get PDF
    Mobile and ubiquitous devices are everywhere around us generating considerable amount of data. The concept of mobile computing and analytics is expanding due to the fact that we are using mobile devices day in and out without even realizing it. These mobile devices use Wi-Fi, Bluetooth or mobile data to be intermittently connected to the world, generating, sending and receiving data on the move. Latest mobile applications incorporating graphics, video and audio are main causes of loading the mobile devices by consuming battery, memory and processing power. Mobile Big data analytics includes for instance, big health data, big location data, big social media data, and big heterogeneous data. Healthcare is undoubtedly one of the most data-intensive industries nowadays and the challenge is not only in acquiring, storing, processing and accessing data, but also in engendering useful insights out of it. These insights generated from health data may reduce health monitoring cost, enrich disease diagnosis, therapy, and care and even lead to human lives saving. The challenge in mobile data and Big data analytics is how to meet the growing performance demands of these activities while minimizing mobile resource consumption. This thesis proposes a scalable architecture for mobile big data analytics implementing three new algorithms (i.e. Mobile resources optimization, Mobile analytics customization and Mobile offloading), for the effective usage of resources in performing mobile data analytics. Mobile resources optimization algorithm monitors the resources and switches off unused network connections and application services whenever resources are limited. However, analytics customization algorithm attempts to save energy by customizing the analytics process while implementing some data-aware techniques. Finally, mobile offloading algorithm decides on the fly whether to process data locally or delegate it to a Cloud back-end server. The ultimate goal of this research is to provide healthcare decision makers with the advancements in mobile Big data analytics and support them in handling large and heterogeneous health datasets effectively on the move

    Analysis and design of individual information systems to support health behavior change

    Get PDF
    As a wide-ranging socio-technical transformation, the digitalization has significantly influenced the world, bringing opportunities and challenges to our lives. Despite numerous benefits like the possibility to stay connected with people around the world, the increasing dispersion and use of digital technologies and media (DTM) pose risks to individuals’ well-being and health. Rising demands emerging from the digital world have been linked to digital stress, that is, stress directly or indirectly resulting from DTM (Ayyagari et al. 2011; Ragu-Nathan et al. 2008; Tarafdar et al. 2019; Weil and Rosen 1997), potentially intensifying individuals’ overall exposure to stress. Individuals experiencing this adverse consequence of digitalization are at elevated risk of developing severe mental health impairments (Alhassan et al. 2018; Haidt and Allen 2020; Scott et al. 2017), which is why various scholars emphasize that research should place a stronger focus on analyzing and shaping the role of the individual in a digital world, pursuing instrumental as well as humanistic objectives (Ameen et al. 2021; Baskerville 2011b). Information Systems (IS) research has long placed emphasis on the use of information and communication technology (ICT) in organizations, viewing an information system as the socio-technical system that emerges from individuals’ interaction with DTM in organizations. However, socio-technical information systems, as the essence of the IS discipline (Lee 2004; Sarker et al. 2019), are also present in different social contexts from private life. Acknowledging the increasing private use of DTM, such as smartphones and social networks, IS scholars have recently intensified their efforts to understand the human factor of IS (Avison and Fitzgerald 1991; Turel et al. 2021). A framework recently proposed by Matt et al. (2019) suggests three research angles: analyzing individuals’ behavior associated with their DTM use, analyzing what consequences arise from their DTM use behavior, and designing new technologies that promote positive or mitigate negative effects of individuals’ DTM use. Various recent studies suggest that individuals’ behavior seems to be an important lever influencing the outcomes of their DTM use (Salo et al. 2017; Salo et al. 2020; Weinstein et al. 2016). Therefore, this dissertation aims to contribute to IS research targeting the facilitation of a healthy DTM use behavior. It explores the use behavior, consequences, and design of DTM for individuals' use with the objective to deliver humanistic value by increasing individuals' health through supporting a behavior change related to their DTM use. The dissertation combines behavioral science and design science perspectives and applies pluralistic methodological approaches from qualitative (e.g., interviews, prototyping) and quantitative research (e.g., survey research, field studies), including mixed-methods approaches mixing both. Following the framework from Matt et al. (2019), the dissertation takes three perspectives therein: analyzing individuals’ behavior, analyzing individuals’ responses to consequences of DTM use, and designing information systems assisting DTM users. First, the dissertation presents new descriptive knowledge on individuals’ behavior related to their use of DTM. Specifically, it investigates how individuals behave when interacting with DTM, why they behave the way they do, and how their behavior can be influenced. Today, a variety of digital workplace technologies offer employees different ways of pursuing their goals or performing their tasks (Köffer 2015). As a result, individuals exhibit different behaviors when interacting with these technologies. The dissertation analyzes what interactional roles DTM users can take at the digital workplace and what may influence their behavior. It uses a mixed-methods approach and combines a quantitative study building on trace data from a popular digital workplace suite and qualitative interviews with users of this digital workplace suite. The empirical analysis yields eight user roles that advance the understanding of users’ behavior at the digital workplace and first insights into what factors may influence this behavior. A second study adds another perspective and investigates how habitual behavior can be changed by means of DTM design elements. Real-time feedback has been discussed as a promising way to do so (Schibuola et al. 2016; Weinmann et al. 2016). In a field experiment, employees working at the digital workplace are provided with an external display that presents real-time feedback on their office’s indoor environmental quality. The experiment examines if and to what extent the feedback influences their ventilation behavior to understand the effect of feedback as a means of influencing individuals’ behavior. The results suggest that real-time feedback can effectively alter individuals’ behavior, yet the feedback’s effectiveness reduces over time, possibly as a result of habituation to the feedback. Second, the dissertation presents new descriptive and prescriptive knowledge on individuals’ ways to mitigate adverse consequences arising from the digitalization of individuals. A frequently discussed consequence that digitalization has on individuals is digital stress. Although research efforts strive to determine what measures individuals can take to effectively cope with digital stress (Salo et al. 2017; Salo et al. 2020; Weinert 2018), further understanding of individuals’ coping behavior is needed (Weinert 2018). A group at high risk of suffering from the adverse effects of digital stress is adolescents because they grow up using DTM daily and are still developing their identity, acquiring mental strength, and adopting essential social skills. To facilitate a healthy DTM use, the dissertation explores what strategies adolescents use to cope with the demands of their DTM use. Combining a qualitative and a quantitative study, it presents 30 coping responses used by adolescents, develops five factors underlying adolescents’ activation of coping responses, and identifies gender- and age-related differences in their coping behavior. Third, the dissertation presents new prescriptive knowledge on the design of individual information systems supporting individuals in understanding and mitigating their perceived stress. Facilitated by the sensing capabilities of modern mobile devices, it explores the design and development of mobile systems that assess stress and support individuals in coping with stress by initiating a change of stress-related behavior. Since there is currently limited understanding of how to develop such systems, this dissertation explores various facets of their design and development. As a first step, it presents the development of a prototype aiming for life-integrated stress assessment, that is, the mobile sensor-based assessment of an individual’s stress without interfering with their daily routines. Data collected with the prototype yields a stress model relating sensor data to individuals’ perception of stress. To deliver a more generalized perspective on mobile stress assessment, the dissertation further presents a literature- and experience-based design theory comprising a design blueprint, design requirements, design principles, design features, and a discussion of potentially required trade-offs. Mobile stress assessment may be used for the development of mobile coping assistants. Aiming to assist individuals in effectively coping with stress and preventing future stress, a mobile coping assistant should recommend adequate coping strategies to the stressed individual in real-time or execute targeted actions within a defined scope of action automatically. While the implementation of a mobile coping assistant is yet up to future research, the dissertation presents an abstract design and algorithm for selecting appropriate coping strategies. To sum up, this dissertation contributes new knowledge on the digitalization of individuals to the IS knowledge bases, expanding both descriptive and prescriptive knowledge. Through the combination of diverse methodological approaches, it delivers knowledge on individuals’ behavior when using DTM, on the mitigation of consequences that may arise from individuals’ use of DTM, and on the design of individual information systems with the goal of facilitating a behavior change, specifically, regarding individuals’ coping with stress. Overall, the research contained in this dissertation may promote the development of digital assistants that support individuals’ in adopting a healthy DTM use behavior and thereby contribute to shaping a socio-technical environment that creates more benefit than harm for all individuals
    • 

    corecore