529 research outputs found

    Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU

    Full text link
    Machine learning approaches have been effective in predicting adverse outcomes in different clinical settings. These models are often developed and evaluated on datasets with heterogeneous patient populations. However, good predictive performance on the aggregate population does not imply good performance for specific groups. In this work, we present a two-step framework to 1) learn relevant patient subgroups, and 2) predict an outcome for separate patient populations in a multi-task framework, where each population is a separate task. We demonstrate how to discover relevant groups in an unsupervised way with a sequence-to-sequence autoencoder. We show that using these groups in a multi-task framework leads to better predictive performance of in-hospital mortality both across groups and overall. We also highlight the need for more granular evaluation of performance when dealing with heterogeneous populations.Comment: KDD 201

    2020 SDSU Data Science Symposium Program

    Get PDF
    https://openprairie.sdstate.edu/ds_symposium_programs/1002/thumbnail.jp

    Learning Better Clinical Risk Models.

    Full text link
    Risk models are used to estimate a patient’s risk of suffering particular outcomes throughout clinical practice. These models are important for matching patients to the appropriate level of treatment, for effective allocation of resources, and for fairly evaluating the performance of healthcare providers. The application and development of methods from the field of machine learning has the potential to improve patient outcomes and reduce healthcare spending with more accurate estimates of patient risk. This dissertation addresses several limitations of currently used clinical risk models, through the identification of novel risk factors and through the training of more effective models. As wearable monitors become more effective and less costly, the previously untapped predictive information in a patient’s physiology over time has the potential to greatly improve clinical practice. However translating these technological advances into real-world clinical impacts will require computational methods to identify high-risk structure in the data. This dissertation presents several approaches to learning risk factors from physiological recordings, through the discovery of latent states using topic models, and through the identification of predictive features using convolutional neural networks. We evaluate these approaches on patients from a large clinical trial and find that these methods not only outperform prior approaches to leveraging heart rate for cardiac risk stratification, but that they improve overall prediction of cardiac death when considered alongside standard clinical risk factors. We also demonstrate the utility of this work for learning a richer description of sleep recordings. Additionally, we consider the development of risk models in the presence of missing data, which is ubiquitous in real-world medical settings. We present a novel method for jointly learning risk and imputation models in the presence of missing data, and find significant improvements relative to standard approaches when evaluated on a large national registry of trauma patients.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113326/1/alexve_1.pd

    Clinical deterioration detection for continuous vital signs monitoring using wearable sensors

    Get PDF
    Surgical patients are at risk of experiencing clinical deterioration events, especially when transferred to general wards during the postoperative period of their hospital stay. Cur rently, such events are detected by combining Early Warning Scores (EWS) with manual and periodical vital signs measurements, performed by nurses every 4 to 6 hours. Hence, deterioration may remain unnoticed for hours, delaying patient treatment, which might lead to increased morbidity and mortality. Also, EWS are inadequate to predict events so physiologically complex. So that early warning of deterioration could be provided, it was investigated the potential of warning systems that combine machine learning-based prediction models with continuous vital signs monitoring, provided by wearable sensors. This dissertation presents the development of such a warning system, fully indepen dent of manual measurements and based on a logistic regression prediction model with 85% sensitivity, 79% precision and 98% specificity. Additionally, a new personalized ap proach to handle missing data periods in vital signs and a novel variation of a RR-interval preprocessing technique were developed. The results obtained revealed a relevant im provement in the detection of deterioration events and a significant reduction in false alarms, when comparing the warning system with a commonly employed EWS (42% sensitivity, 14% precision and 90% specificity). It was also found that the developed sys tem can assess patient’s condition much more frequently and with timely deterioration detection, without even requiring nurses to interrupt their workflow. These findings sup port the idea that these warning systems are reliable, more practical, more appropriate and produce smarter alarms than current methods, making early deterioration detection possible, thus contributing for better patients outcomes. Nonetheless, the performance achieved may yet reveal insufficient for application in real clinical contexts. Therefore, further work is necessary to improve prediction performance to a greater extent and to confirm these systems reliability
    • …
    corecore