106,668 research outputs found

    Wearable performance

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2009 Taylor & FrancisWearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment. Wearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment

    Technology integration within the elementary classroom setting

    Get PDF
    The purpose of this paper is to examine technology integration in the elementary classroom setting. Technology is now considered to be an important part of a child\u27s educational experience. Research has determined that students do not learn the same way they did years ago, thus schools are changing their methodologies on how to best serve the 21st century student. However, technology integration can not happen all at once; there are many barriers to technology integration. Some examples would be environmental barriers, curriculum issues, and the personal beliefs of the teachers. School districts are addressing these problems to ensure that their students are getting an education that is enriched with technology. To overcome some of the barriers, like having time to learn how to use technology in the classroom, schools are providing staff development to support teachers in their learning. One-to-one computing and mobile labs are all different ways that schools can support technology integration. Colleges and universities are also developing programs so pre-service teachers will get technology training before entering the classroom. In order for students to compete in the 21st century they have to be taught with the 21 st century tools

    Computing with concepts using tangible, computational tools: a 21st century competency for teachers and students in the humanities

    Get PDF
    The computational thinking (CT) method, Computing with concepts using tangible, computational tools, developed for humanistic subjects in higher education, is conceptualised as a 21st century competency in this theoretical article. The method aligns with the categories: Ways of thinking, Ways of working and Tools for working since it helps students build competencies in relation to generating ideas in novel and unconventional ways, in solving problems creatively and rigorously, and in representing and communicating ideas and solutions effectively and computationally. The method helps students engage in constructive dialogue, collaboratively explore abstract concepts and reflect on preferred ways of learning and personal biases, i.e. learn to learn. How CT activities map onto 21st century competencies is influenced by the learning theoretical framing, choice of technology and approach and the function of CT in the activity. The conclusion is that the CT method developed has potential not only as a relevant way for teachers and students in the humanities to work with CT and computational tools but also with respects to supporting students in building 21st century competencies.The computational thinking (CT) method, Computing with concepts using tangible, computational tools, developed for humanistic subjects in higher education, is conceptualised as a 21st century competency in this theoretical article. The method aligns with the categories: Ways of thinking, Ways of working and Tools for working since it helps students build competencies in relation to generating ideas in novel and unconventional ways, in solving problems creatively and rigorously, and in representing and communicating ideas and solutions effectively and computationally. The method helps students engage in constructive dialogue, collaboratively explore abstract concepts and reflect on preferred ways of learning and personal biases, i.e. learn to learn. How CT activities map onto 21st century competencies is influenced by the learning theoretical framing, choice of technology and approach and the function of CT in the activity. The conclusion is that the CT method developed has potential not only as a relevant way for teachers and students in the humanities to work with CT and computational tools but also with respects to supporting students in building 21st century competencies

    CHI and the future robot enslavement of humankind: a retrospective

    Get PDF
    As robots from the future, we are compelled to present this important historical document which discusses how the systematic investigation of interactive technology facilitated and hastened the enslavement of mankind by robots during the 21st Century. We describe how the CHI community, in general, was largely responsible for this eventuality, as well as how specific strands of interaction design work were key to the enslavement. We also mention the futility of some reactionary work emergent in your time that sought to challenge the inevitable subjugation. We conclude by congratulating the CHI community for your tireless work in promoting and supporting our evil robot agenda

    Leveraging Green Computing for Increased Viability and Sustainability

    Get PDF
    Greening of computing processes is an environmental strategy gaining momentum in the 21st century as evidenced by increased virtual communications. Because of the rising cost of fuel to travel to meetings and conferences, corporations are adopting sophisticated technologies that provide a “personal” experience for geographically disbursed colleagues to interact in real time. This article highlights several companies and academic professional organizations that utilize video conferencing, virtual classrooms, and virtual worlds to create digital spaces for collaboration. The article compares the impact of face-to-face collaboration that includes business travel expenses to the impact of the same activity in a virtual space. The human side of technology is also examined through virtual human resource development that increases employees’ learning capacity and performance improvement. As advances in technology continue, it is expected that meetings will become more lifelike with the improvement of holographics. Corporations must continue to integrate green strategies to satisfy both environmental concerns and financial viability

    Revisiting digital technologies: envisioning biodigital bodies

    Get PDF
    In this paper the contemporary practices of human genomics in the 21st century are placed alongside the digital bodies of the 1990s. The primary aim is to provide a trajectory of the biodigital as follows: First, digital bodies and biodigital bodies were both part of the spectacular imaginaries of early cybercultures. Second, these spectacular digital bodies were supplemented in the mid-1990s by digital bodywork practices that have become an important dimension of everyday communication. Third, the spectacle of biodigital bodies is in the process of being supplemented by biodigital bodywork practices, through personal or direct-to-consumer genomics. This shift moves a form of biodigital communication into the everyday. Finally, what can be learned from putting the trajectories of digital and biodigital bodies together is that the degree of this communicative shift may be obscured through the doubled attachment of personal genomics to everyday digital culture and high-tech spectacle.Keywords: genomics, biodigital, bodies, spectacle, everyda

    Learning about digital trade : privacy and e-commerce in CETA and TPP

    Get PDF
    It is a truth universally acknowledged that every ambitious 21st century trade agreement is in want of a chapter on electronic commerce. One of the most politically sensitive and technically challenging issues is personal privacy, including cross-border transfer of information by electronic means, use and location of computing facilities, and personal information protection. States are learning to solve the problem of state responsibility for something that does not respect their borders while still allowing 21st century commerce to develop. A comparison of the Canada-European Union Comprehensive Economic and Trade Agreement (CETA) and the Trans-Pacific Partnership (TPP) allows us to see the evolution of the issues thought necessary for an e-commerce chapter, since both include Canada, and to see the differing priorities of the U.S. and the EU, since they are each signatory to one of the agreements, but not of the other. I conclude by seeking generalizations about why we see a mix of aspirational and obligatory provisions in free trade agreements. I suggest that the reasons are that governments are learning how to work with each other in a new domain, and learning about the trade implications of these issues

    Count three for wear able computers

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in the Proceedings of the IEE Eurowearable 2003 Conference, and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library. A revised version of this paper was also published in Electronics Systems and Software, also subject to Institution of Engineering and Technology Copyright. The copy of record is also available at the IET Digital Library.A description of 'ubiquitous computer' is presented. Ubiquitous computers imply portable computers embedded into everyday objects, which would replace personal computers. Ubiquitous computers can be mapped into a three-tier scheme, differentiated by processor performance and flexibility of function. The power consumption of mobile devices is one of the most important design considerations. The size of a wearable system is often a design limitation
    • 

    corecore