3,602 research outputs found

    ARoMA-V2: Assistive Robotic Manipulation Assistance with Computer Vision and Voice Recognition

    Get PDF
    We have designed and developed a handy alternative control method, called ARoMA-V2 (Assistive Robotic Manipulation Assistance with computer Vision and Voice recognition), for controlling assistive robotic manipulators based on computer vision and user voice recognition. Potential advantages of ARoMA-V2 over the traditional alternatives include: providing completely hands-free operation; helping a user to maintain a better working posture; Allowing the user to work in postures that otherwise would not be effective for operating an assistive robotic manipulator (i.e., reclined in a chair or bed); supporting task specific commands; providing the user with different levels of intelligent autonomous manipulation assistances; giving the user the feeling that he or she is still in control at any moment; and being compatible with different types of new and existing assistive robotic manipulators

    Design and Development of Assistive Robots for Close Interaction with People with Disabilities

    Get PDF
    People with mobility and manipulation impairments wish to live and perform tasks as independently as possible; however, for many tasks, compensatory technology does not exist, to do so. Assistive robots have the potential to address this need. This work describes various aspects of the development of three novel assistive robots: the Personal Mobility and Manipulation Appliance (PerMMA), the Robotic Assisted Transfer Device (RATD), and the Mobility Enhancement Robotic Wheelchair (MEBot). PerMMA integrates mobility with advanced bi-manual manipulation to assist people with both upper and lower extremity impairments. The RATD is a wheelchair mounted robotic arm that can lift higher payloads and its primary aim is to assist caregivers of people who cannot independently transfer from their electric powered wheelchair to other surfaces such as a shower bench or toilet. MEBot is a wheeled robot that has highly reconfigurable kinematics, which allow it to negotiate challenging terrain, such as steep ramps, gravel, or stairs. A risk analysis was performed on all three robots which included a Fault Tree Analysis (FTA) and a Failure Mode Effect Analysis (FMEA) to identify potential risks and inform strategies to mitigate them. Identified risks or PerMMA include dropping sharp or hot objects. Critical risks identified for RATD included tip over, crush hazard, and getting stranded mid-transfer, and risks for MEBot include getting stranded on obstacles and tip over. Lastly, several critical factors, such as early involvement of people with disabilities, to guide future assistive robot design are presented

    Robolink: Modular Robot Arm

    Get PDF
    The goal of this project is to utilize the igusÂź Robolink arm five degree of freedom modular robot arm, to complete useful tasks for persons with no or limited mobility. These tasks include driving the joystick of a wheelchair, flipping a light switch, and turning the pages of a book. This is done through designing and building a modular interface for mounting the Robolink arm onto an existing wheelchair project and implementing a universal control interface in the software for future expansion of tasks and control methods

    A review of the effectiveness of lower limb orthoses used in cerebral palsy

    Get PDF
    To produce this review, a systematic literature search was conducted for relevant articles published in the period between the date of the previous ISPO consensus conference report on cerebral palsy (1994) and April 2008. The search terms were 'cerebral and pals* (palsy, palsies), 'hemiplegia', 'diplegia', 'orthos*' (orthoses, orthosis) orthot* (orthotic, orthotics), brace or AFO

    PRELIMINARY DESIGN AND EVALUATION OF AN OVERHEAD KITCHEN ROBOT APPLIANCE

    Get PDF
    Many older adults and individuals with disabilities have difficulty with reaching, grasping, and carrying items that are a necessity to perform independent activities of daily living, including meal preparation in the kitchen. Assistive robotic manipulators are starting to show potential for independent assistance through their use on wheelchairs or mobile bases, but continue to lack many of the autonomous features readily available with fixed environment manipulators. The KitchenBot design described here provides the details and approach to providing an assistive robotic manipulator access to an entire kitchen workspace by utilizing a multi-degree track. Numerous focus groups were conducted in conjunction with the design and major features like heavy payload ability, tablet control interface, and user feedback was extracted. With further development, the KitchenBot could perform an even longer list of routine autonomous tasks in a product viable for everyone to use

    Stability analysis of electrical powered wheelchair-mounted robotic-assisted transfer device

    Get PDF
    The ability of people with disabilities to live in their homes and communities with maximal independence often hinges, at least in part, on their ability to transfer or be transferred by an assistant. Because of limited resources and the expense of personal care, robotic transfer assistance devices will likely be in great demand. An easy-to-use system for assisting with transfers, attachable to electrical powered wheelchairs (EPWs) and readily transportable, could have a significant positive effect on the quality of life of people with disabilities. We investigated the stability of our newly developed Strong Arm, which is attached and integrated with an EPW to assist with transfers. The stability of the system was analyzed and verified by experiments applying different loads and using different system configurations. The model predicted the distributions of the system’s center of mass very well compared with the experimental results. When real transfers were conducted with 50 and 75 kg loads and an 83.25 kg dummy, the current Strong Arm could transfer all weights safely without tip-over. Our modeling accurately predicts the stability of the system and is suitable for developing better control algorithms to enhance the safety of the device

    DEVELOPMENT AND EVALUATION OF AN ADVANCED REAL-TIME ELECTRICAL POWERED WHEELCHAIR CONTROLLER

    Get PDF
    Advances in Electric Powered Wheelchairs (EPW) have improved mobility for people with disabilities as well as older adults, and have enhanced their integration into society. Some of the issues still present in EPW lie in the difficulties when encountering different types of terrain, and access to higher or low surfaces. To this end, an advanced real-time electrical powered wheelchair controller was developed. The controller was comprised of a hardware platform with sensors measuring the speed of the driving, caster wheels and the acceleration, with a single board computer for implementing the control algorithms in real-time, a multi-layer software architecture, and modular design. A model based real-time speed and traction controller was developed and validated by simulation. The controller was then evaluated via driving over four different surfaces at three specified speeds. Experimental results showed that model based control performed best on all surfaces across the speeds compared to PID (proportional-integral-derivative) and Open Loop control. A real-time slip detection and traction control algorithm was further developed and evaluated by driving the EPW over five different surfaces at three speeds. Results showed that the performance of anti-slip control was consistent on the varying surfaces at different speeds. The controller was also tested on a front wheel drive EPW to evaluate a forwarding tipping detection and prevention algorithm. Experimental results showed that the tipping could be accurately detected as it was happening and the performance of the tipping prevention strategy was consistent on the slope across different speeds. A terrain-dependent EPW user assistance system was developed based on the controller. Driving rules for wet tile, gravel, slopes and grass were developed and validated by 10 people without physical disabilities. The controller was also adapted to the Personal Mobility and Manipulation Appliance (PerMMA) Generation II, which is an advanced power wheelchair with a flexible mobile base, allowing it to adjust the positions of each of the four casters and two driving wheels. Simulations of the PerMMA Gen II system showed that the mobile base controller was able to climb up to 8” curb and maintain passenger’s posture in a comfort position

    Safety and maintenance engineering: A compilation

    Get PDF
    A compilation is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Safety of personnel engaged in the handling of hazardous materials and equipment, protection of equipment from fire, high wind, or careless handling by personnel, and techniques for the maintenance of operating equipment are reported

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs

    Pervasive and standalone computing: The perceptual effects of variable multimedia quality.

    Get PDF
    The introduction of multimedia on pervasive and mobile communication devices raises a number of perceptual quality issues, however, limited work has been done examining the 3-way interaction between use of equipment, quality of perception and quality of service. Our work measures levels of informational transfer (objective) and user satisfaction (subjective)when users are presented with multimedia video clips at three different frame rates, using four different display devices, simulating variation in participant mobility. Our results will show that variation in frame-rate does not impact a user’s level of information assimilation, however, does impact a users’ perception of multimedia video ‘quality’. Additionally, increased visual immersion can be used to increase transfer of video information, but can negatively affect the users’ perception of ‘quality’. Finally, we illustrate the significant affect of clip-content on the transfer of video, audio and textual information, placing into doubt the use of purely objective quality definitions when considering multimedia presentations
    • 

    corecore