296 research outputs found

    A Sensor-Based mHealth Platform for Remote Monitoring and Intervention of Frailty Patients at Home

    Get PDF
    Frailty syndrome is an independent risk factor for serious health episodes, disability, hospitalization, falls, loss of mobility, and cardiovascular disease. Its high reversibility demands personalized interventions among which exercise programs are highly efficient to contribute to its delay. Information technology-based solutions to support frailty have been recently approached, but most of them are focused on assessment and not on intervention. This paper describes a sensor-based mHealth platform integrated in a service-based architecture inside the FRAIL project towards the remote monitoring and intervention of pre-frail and frail patients at home. The aim of this platform is constituting an efficient and scalable system for reducing both the impact of aging and the advance of frailty syndrome. Among the results of this work are: (1) the development of elderly-focused sensors and platform; (2) a technical validation process of the sensor devices and the mHealth platform with young adults; and (3) an assessment of usability and acceptability of the devices with a set of pre-frail and frail patients. After the promising results obtained, future steps of this work involve performing a clinical validation in order to quantify the impact of the platform on health outcomes of frail patients.Consejería de Conocimiento, Investigación y Universidad P18-TPJ-307

    Multimodal Sensor Data Integration for Indoor Positioning in Ambient-Assisted Living Environments

    Get PDF
    A reliable Indoor Positioning System (IPS) is a crucial part of the Ambient-Assisted Living (AAL) concept. The use of Wi-Fi fingerprinting techniques to determine the location of the user, based on the Received Signal Strength Indication (RSSI) mapping, avoids the need to deploy a dedicated positioning infrastructure but comes with its own issues. Heterogeneity of devices and RSSI variability in space and time due to environment changing conditions pose a challenge to positioning systems based on this technique. The primary purpose of this research is to examine the viability of leveraging other sensors in aiding the positioning system to provide more accurate predictions. In particular, the experiments presented in this work show that Inertial Motion Units (IMU), which are present by default in smart devices such as smartphones or smartwatches, can increase the performance of Indoor Positioning Systems in AAL environments. Furthermore, this paper assesses a set of techniques to predict the future performance of the positioning system based on the training data, as well as complementary strategies such as data scaling and the use of consecutive Wi-Fi scanning to further improve the reliability of the IPS predictions. This research shows that a robust positioning estimation can be derived from such strategies

    Intelligent sensing technologies for the diagnosis, monitoring and therapy of alzheimer’s disease:A systematic review

    Get PDF
    Alzheimer’s disease is a lifelong progressive neurological disorder. It is associated with high disease management and caregiver costs. Intelligent sensing systems have the capability to provide context-aware adaptive feedback. These can assist Alzheimer’s patients with, continuous monitoring, functional support and timely therapeutic interventions for whom these are of paramount importance. This review aims to present a summary of such systems reported in the extant literature for the management of Alzheimer’s disease. Four databases were searched, and 253 English language articles were identified published between the years 2015 to 2020. Through a series of filtering mechanisms, 20 articles were found suitable to be included in this review. This study gives an overview of the depth and breadth of the efficacy as well as the limitations of these intelligent systems proposed for Alzheimer’s. Results indicate two broad categories of intelligent technologies, distributed systems and self-contained devices. Distributed systems base their outcomes mostly on long-term monitoring activity patterns of individuals whereas handheld devices give quick assessments through touch, vision and voice. The review concludes by discussing the potential of these intelligent technologies for clinical practice while highlighting future considerations for improvements in the design of these solutions for Alzheimer’s disease
    corecore