1,990 research outputs found

    PAC-MEN: Personal Autonomic Computing Monitoring Environments

    Get PDF
    The overall goal of this research is to improve the `environment awareness' aspect of personal autonomic computing. Personal Computing offers unique challenges for self-management due to its multiequipment, multi-situation, and multi-user nature. The aim is to develop a support architecture for multiplatform working, based on autonomic computing concepts and techniques. Of particular interest is collaboration among personal systems to take a shared responsibility for environment awareness. Concepts mirroring human mechanisms, such as 'reflex reactions' and the use of 'vital signs' to assess operational health, are used in designing and implementing the personal computing architecture. A proof of concept self-healing tool is considered and lessons learned used for the requirements specification of the community-based environment awareness prototype environment---PACMEN (Personal Autonomic Computing Monitor ENvironment)

    Autonomic Computing

    Get PDF
    Autonomic computing (AC) has as its vision the creation of self-managing systems to address today’s con-cerns of complexity and total cost of ownership while meeting tomorrow’s needs for pervasive and ubiquitous computation and communication. This paper reports on the latest auto-nomic systems research and technologies to influence the industry; it looks behind AC, summarising what it is, the current state-of-the-art research, related work and initiatives, highlights research and technology transfer issues and concludes with further and recommended reading

    Birds of a Feather Session: “Autonomic Computing: Panacea or Poppycock?”

    Get PDF

    An Autonomous Engine for Services Configuration and Deployment.

    Full text link
    The runtime management of the infrastructure providing service-based systems is a complex task, up to the point where manual operation struggles to be cost effective. As the functionality is provided by a set of dynamically composed distributed services, in order to achieve a management objective multiple operations have to be applied over the distributed elements of the managed infrastructure. Moreover, the manager must cope with the highly heterogeneous characteristics and management interfaces of the runtime resources. With this in mind, this paper proposes to support the configuration and deployment of services with an automated closed control loop. The automation is enabled by the definition of a generic information model, which captures all the information relevant to the management of the services with the same abstractions, describing the runtime elements, service dependencies, and business objectives. On top of that, a technique based on satisfiability is described which automatically diagnoses the state of the managed environment and obtains the required changes for correcting it (e.g., installation, service binding, update, or configuration). The results from a set of case studies extracted from the banking domain are provided to validate the feasibility of this propos
    corecore