19,605 research outputs found

    Feature Level Fusion of Face and Fingerprint Biometrics

    Full text link
    The aim of this paper is to study the fusion at feature extraction level for face and fingerprint biometrics. The proposed approach is based on the fusion of the two traits by extracting independent feature pointsets from the two modalities, and making the two pointsets compatible for concatenation. Moreover, to handle the problem of curse of dimensionality, the feature pointsets are properly reduced in dimension. Different feature reduction techniques are implemented, prior and after the feature pointsets fusion, and the results are duly recorded. The fused feature pointset for the database and the query face and fingerprint images are matched using techniques based on either the point pattern matching, or the Delaunay triangulation. Comparative experiments are conducted on chimeric and real databases, to assess the actual advantage of the fusion performed at the feature extraction level, in comparison to the matching score level.Comment: 6 pages, 7 figures, conferenc

    On using gait to enhance frontal face extraction

    No full text
    Visual surveillance finds increasing deployment formonitoring urban environments. Operators need to be able to determine identity from surveillance images and often use face recognition for this purpose. In surveillance environments, it is necessary to handle pose variation of the human head, low frame rate, and low resolution input images. We describe the first use of gait to enable face acquisition and recognition, by analysis of 3-D head motion and gait trajectory, with super-resolution analysis. We use region- and distance-based refinement of head pose estimation. We develop a direct mapping to relate the 2-D image with a 3-D model. In gait trajectory analysis, we model the looming effect so as to obtain the correct face region. Based on head position and the gait trajectory, we can reconstruct high-quality frontal face images which are demonstrated to be suitable for face recognition. The contributions of this research include the construction of a 3-D model for pose estimation from planar imagery and the first use of gait information to enhance the face extraction process allowing for deployment in surveillance scenario

    Shape and Texture Combined Face Recognition for Detection of Forged ID Documents

    Get PDF
    This paper proposes a face recognition system that can be used to effectively match a face image scanned from an identity (ID) doc-ument against the face image stored in the biometric chip of such a document. The purpose of this specific face recognition algorithm is to aid the automatic detection of forged ID documents where the photography printed on the document’s surface has been altered or replaced. The proposed algorithm uses a novel combination of texture and shape features together with sub-space representation techniques. In addition, the robustness of the proposed algorithm when dealing with more general face recognition tasks has been proven with the Good, the Bad & the Ugly (GBU) dataset, one of the most challenging datasets containing frontal faces. The proposed algorithm has been complement-ed with a novel method that adopts two operating points to enhance the reliability of the algorithm’s final verification decision.Final Accepted Versio

    AXES at TRECVID 2012: KIS, INS, and MED

    Get PDF
    The AXES project participated in the interactive instance search task (INS), the known-item search task (KIS), and the multimedia event detection task (MED) for TRECVid 2012. As in our TRECVid 2011 system, we used nearly identical search systems and user interfaces for both INS and KIS. Our interactive INS and KIS systems focused this year on using classifiers trained at query time with positive examples collected from external search engines. Participants in our KIS experiments were media professionals from the BBC; our INS experiments were carried out by students and researchers at Dublin City University. We performed comparatively well in both experiments. Our best KIS run found 13 of the 25 topics, and our best INS runs outperformed all other submitted runs in terms of P@100. For MED, the system presented was based on a minimal number of low-level descriptors, which we chose to be as large as computationally feasible. These descriptors are aggregated to produce high-dimensional video-level signatures, which are used to train a set of linear classifiers. Our MED system achieved the second-best score of all submitted runs in the main track, and best score in the ad-hoc track, suggesting that a simple system based on state-of-the-art low-level descriptors can give relatively high performance. This paper describes in detail our KIS, INS, and MED systems and the results and findings of our experiments
    • 

    corecore