1,578 research outputs found

    Facial Expression Recognition Using Diagonal Crisscross Local Binary Pattern

    Get PDF
    Facial expression analysis is a noteworthy and challenging problem in the field of Computer Vision, Human-Computer Interaction and Image Analysis. For accomplishing FER, it is very difficult to acquire an effective facial description of the original facial images. The Local Binary Pattern (LBP) which captures facial attributes locally from the images is broadly used for facial expression recognition. But conventional LBP has some limitations. To overcome the limitations, novel approach for Facial Expression Recognition based Diagonal Crisscross Local Binary Pattern (DCLBP). It is based on the idea that pixel variations in diagonal as well as vertical and horizontal (crisscross) should be taken as an image feature in the neighborhood different from the other conventional approaches.The Chi-square distance method is used to classify various expressions. To enhance the recognition rate and reduce the classification time, weighted mask is employed to label the particular components in the face like eyebrow, mouth and eye with larger weights than the other parts of the face. The results of comparison showed the performance of the suggested approach comparing to the other approaches and the experimental results on the databases JAFFE and CK exhibited the better recognition rate

    Combining deep neural network with traditional classifier to recognize facial expressions

    Get PDF
    Facial expressions are important in people's daily communications. Recognising facial expressions also has many important applications in the areas such as healthcare and e-learning. Existing facial expression recognition systems have problems such as background interference. Furthermore, systems using traditional approaches like SVM (Support Vector Machine) have weakness in dealing with unseen images. Systems using deep neural network have problems such as requirement for GPU, longer training time and requirement for large memory. To overcome the shortcomings of pure deep neural network and traditional facial recognition approaches, this paper presents a new facial expression recognition approach which has image pre-processing techniques to remove unnecessary background information and combines deep neural network ResNet50 and a traditional classifier-the multiclass model for Support Vector Machine to recognise facial expressions. The proposed approach has better recognition accuracy than traditional approaches like Support Vector Machine and doesn't need GPU. We have compared 3 proposed frameworks with a traditional SVM approach against the Karolinska Directed Emotional Faces (KDEF) Database, the Japanese Female Facial Expression (JAFFE) Database and the extended Cohn-Kanade dataset (CK+), respectively. The experiment results show that the features extracted from the layer 49Relu have the best performance for these three datasets

    Facial Expression Recognition Utilizing Local Direction-Based Robust Features and Deep Belief Network

    Get PDF
    Emotional health plays very vital role to improve people's quality of lives, especially for the elderly. Negative emotional states can lead to social or mental health problems. To cope with emotional health problems caused by negative emotions in daily life, we propose efficient facial expression recognition system to contribute in emotional healthcare system. Thus, facial expressions play a key role in our daily communications, and recent years have witnessed a great amount of research works for reliable facial expressions recognition (FER) systems. Therefore, facial expression evaluation or analysis from video information is very challenging and its accuracy depends on the extraction of robust features. In this paper, a unique feature extraction method is presented to extract distinguished features from the human face. For person independent expression recognition, depth video data is used as input to the system where in each frame, pixel intensities are distributed based on the distances to the camera. A novel robust feature extraction process is applied in this work which is named as local directional position pattern (LDPP). In LDPP, after extracting local directional strengths for each pixel such as applied in typical local directional pattern (LDP), top directional strength positions are considered in binary along with their strength sign bits. Considering top directional strength positions with strength signs in LDPP can differentiate edge pixels with bright as well as dark regions on their opposite sides by generating different patterns whereas typical LDP only considers directions representing the top strengths irrespective of their signs as well as position orders (i.e., directions with top strengths represent 1 and rest of them 0), which can generate the same patterns in this regard sometimes. Hence, LDP fails to distinguish edge pixels with opposite bright and dark regions in some cases which can be overcome by LDPP. Moreover, the LDPP capabilities are extended through principal component analysis (PCA) and generalized discriminant analysis (GDA) for better face characteristic illustration in expression. The proposed features are finally applied with deep belief network (DBN) for expression training and recognition

    An efficient multiscale scheme using local zernike moments for face recognition

    Get PDF
    In this study, we propose a face recognition scheme using local Zernike moments (LZM), which can be used for both identification and verification. In this scheme, local patches around the landmarks are extracted from the complex components obtained by LZM transformation. Then, phase magnitude histograms are constructed within these patches to create descriptors for face images. An image pyramid is utilized to extract features at multiple scales, and the descriptors are constructed for each image in this pyramid. We used three different public datasets to examine the performance of the proposed method:Face Recognition Technology (FERET), Labeled Faces in the Wild (LFW), and Surveillance Cameras Face (SCface). The results revealed that the proposed method is robust against variations such as illumination, facial expression, and pose. Aside from this, it can be used for low-resolution face images acquired in uncontrolled environments or in the infrared spectrum. Experimental results show that our method outperforms state-of-the-art methods on FERET and SCface datasets.WOS:000437326800174Scopus - Affiliation ID: 60105072Science Citation Index ExpandedQ2 - Q3ArticleUluslararası işbirliği ile yapılmayan - HAYIRMayıs2018YÖK - 2017-1

    Robust Face Representation and Recognition Under Low Resolution and Difficult Lighting Conditions

    Get PDF
    This dissertation focuses on different aspects of face image analysis for accurate face recognition under low resolution and poor lighting conditions. A novel resolution enhancement technique is proposed for enhancing a low resolution face image into a high resolution image for better visualization and improved feature extraction, especially in a video surveillance environment. This method performs kernel regression and component feature learning in local neighborhood of the face images. It uses directional Fourier phase feature component to adaptively lean the regression kernel based on local covariance to estimate the high resolution image. For each patch in the neighborhood, four directional variances are estimated to adapt the interpolated pixels. A Modified Local Binary Pattern (MLBP) methodology for feature extraction is proposed to obtain robust face recognition under varying lighting conditions. Original LBP operator compares pixels in a local neighborhood with the center pixel and converts the resultant binary string to 8-bit integer value. So, it is less effective under difficult lighting conditions where variation between pixels is negligible. The proposed MLBP uses a two stage encoding procedure which is more robust in detecting this variation in a local patch. A novel dimensionality reduction technique called Marginality Preserving Embedding (MPE) is also proposed for enhancing the face recognition accuracy. Unlike Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which project data in a global sense, MPE seeks for a local structure in the manifold. This is similar to other subspace learning techniques but the difference with other manifold learning is that MPE preserves marginality in local reconstruction. Hence it provides better representation in low dimensional space and achieves lower error rates in face recognition. Two new concepts for robust face recognition are also presented in this dissertation. In the first approach, a neural network is used for training the system where input vectors are created by measuring distance from each input to its class mean. In the second approach, half-face symmetry is used, realizing the fact that the face images may contain various expressions such as open/close eye, open/close mouth etc., and classify the top half and bottom half separately and finally fuse the two results. By performing experiments on several standard face datasets, improved results were observed in all the new proposed methodologies. Research is progressing in developing a unified approach for the extraction of features suitable for accurate face recognition in a long range video sequence in complex environments

    Innovative local texture descriptors with application to eye detection

    Get PDF
    Local Binary Patterns (LBP), which is one of the well-known texture descriptors, has broad applications in pattern recognition and computer vision. The attractive properties of LBP are its tolerance to illumination variations and its computational simplicity. However, LBP only compares a pixel with those in its own neighborhood and encodes little information about the relationship of the local texture with the features. This dissertation introduces a new Feature Local Binary Patterns (FLBP) texture descriptor that can compare a pixel with those in its own neighborhood as well as in other neighborhoods and encodes the information of both local texture and features. The features encoded in FLBP are broadly defined, such as edges, Gabor wavelet features, and color features. Specifically, a binary image is first derived by extracting feature pixels from a given image, and then a distance vector field is obtained by computing the distance vector between each pixel and its nearest feature pixel defined in the binary image. Based on the distance vector field and the FLBP parameters, the FLBP representation of the given image is derived. The feasibility of the proposed FLBP is demonstrated on eye detection using the BioID and the FERET databases. Experimental results show that the FLBP method significantly improves upon the LBP method in terms of both the eye detection rate and the eye center localization accuracy. As LBP is sensitive to noise especially in near-uniform image regions, Local Ternary Patterns (LTP) was proposed to address this problem by extending LBP to three-valued codes. However, further research reveals that both LTP and LBP achieve similar results for face and facial expression recognition, while LTP has a higher computational cost than LBP. To improve upon LTP, this dissertation introduces another new local texture descriptor: Local Quaternary Patterns (LQP) and its extension, Feature Local Quaternary Patterns (FLQP). LQP encodes four relationships of local texture, and therefore, it includes more information of local texture than the LBP and the LTP. FLQP, which encodes both local and feature information, is expected to perform even better than LQP for texture description and pattern analysis. The LQP and FLQP are applied to eye detection on the BioID database. Experimental results show that both FLQP and LQP achieve better eye detection performance than FLTP, LTP, FLBP and LBP. The FLQP method achieves the highest eye detection rate
    corecore