34,641 research outputs found

    Person re-identification combining deep features and attribute detection

    Get PDF
    Attributes-Based Re-Identification is a way of identifying individuals when presented with multiple pictures taken under varying conditions. The method typically builds a classifier to detect the presence of certain appearance characteristics in an image, and creates feature descriptors based on the output of the classifier. We improve attribute detection through spatial segregation of a person’s limbs using a skeleton prediction method. After a skeleton has been predicted, it is used to crop the image into three parts - top, middle and bottom. We then pass these images to an attribute prediction network to generate robust feature descriptors. We evaluate the performance of our method on the VIPeR, PRID2011 and i-LIDS data sets, comparing our results against the state-of-the-art to demonstrate competitive overall matching performance

    Deep Attributes Driven Multi-Camera Person Re-identification

    Full text link
    The visual appearance of a person is easily affected by many factors like pose variations, viewpoint changes and camera parameter differences. This makes person Re-Identification (ReID) among multiple cameras a very challenging task. This work is motivated to learn mid-level human attributes which are robust to such visual appearance variations. And we propose a semi-supervised attribute learning framework which progressively boosts the accuracy of attributes only using a limited number of labeled data. Specifically, this framework involves a three-stage training. A deep Convolutional Neural Network (dCNN) is first trained on an independent dataset labeled with attributes. Then it is fine-tuned on another dataset only labeled with person IDs using our defined triplet loss. Finally, the updated dCNN predicts attribute labels for the target dataset, which is combined with the independent dataset for the final round of fine-tuning. The predicted attributes, namely \emph{deep attributes} exhibit superior generalization ability across different datasets. By directly using the deep attributes with simple Cosine distance, we have obtained surprisingly good accuracy on four person ReID datasets. Experiments also show that a simple metric learning modular further boosts our method, making it significantly outperform many recent works.Comment: Person Re-identification; 17 pages; 5 figures; In IEEE ECCV 201

    Improving Person Re-identification by Attribute and Identity Learning

    Full text link
    Person re-identification (re-ID) and attribute recognition share a common target at learning pedestrian descriptions. Their difference consists in the granularity. Most existing re-ID methods only take identity labels of pedestrians into consideration. However, we find the attributes, containing detailed local descriptions, are beneficial in allowing the re-ID model to learn more discriminative feature representations. In this paper, based on the complementarity of attribute labels and ID labels, we propose an attribute-person recognition (APR) network, a multi-task network which learns a re-ID embedding and at the same time predicts pedestrian attributes. We manually annotate attribute labels for two large-scale re-ID datasets, and systematically investigate how person re-ID and attribute recognition benefit from each other. In addition, we re-weight the attribute predictions considering the dependencies and correlations among the attributes. The experimental results on two large-scale re-ID benchmarks demonstrate that by learning a more discriminative representation, APR achieves competitive re-ID performance compared with the state-of-the-art methods. We use APR to speed up the retrieval process by ten times with a minor accuracy drop of 2.92% on Market-1501. Besides, we also apply APR on the attribute recognition task and demonstrate improvement over the baselines.Comment: Accepted to Pattern Recognition (PR

    Person Recognition in Personal Photo Collections

    Full text link
    Recognising persons in everyday photos presents major challenges (occluded faces, different clothing, locations, etc.) for machine vision. We propose a convnet based person recognition system on which we provide an in-depth analysis of informativeness of different body cues, impact of training data, and the common failure modes of the system. In addition, we discuss the limitations of existing benchmarks and propose more challenging ones. Our method is simple and is built on open source and open data, yet it improves the state of the art results on a large dataset of social media photos (PIPA).Comment: Accepted to ICCV 2015, revise

    Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues

    Full text link
    We explore the task of recognizing peoples' identities in photo albums in an unconstrained setting. To facilitate this, we introduce the new People In Photo Albums (PIPA) dataset, consisting of over 60000 instances of 2000 individuals collected from public Flickr photo albums. With only about half of the person images containing a frontal face, the recognition task is very challenging due to the large variations in pose, clothing, camera viewpoint, image resolution and illumination. We propose the Pose Invariant PErson Recognition (PIPER) method, which accumulates the cues of poselet-level person recognizers trained by deep convolutional networks to discount for the pose variations, combined with a face recognizer and a global recognizer. Experiments on three different settings confirm that in our unconstrained setup PIPER significantly improves on the performance of DeepFace, which is one of the best face recognizers as measured on the LFW dataset
    • …
    corecore