513,773 research outputs found

    Occluded Person Re-identification

    Full text link
    Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from the conventional person re-id problem where it is assumed that person images are detected without any occlusion. We thus call this new problem the occluded person re-identitification. To address this new problem, we propose a novel Attention Framework of Person Body (AFPB) based on deep learning, consisting of 1) an Occlusion Simulator (OS) which automatically generates artificial occlusions for full-body person images, and 2) multi-task losses that force the neural network not only to discriminate a person's identity but also to determine whether a sample is from the occluded data distribution or the full-body data distribution. Experiments on a new occluded person re-id dataset and three existing benchmarks modified to include full-body person images and occluded person images show the superiority of the proposed method.Comment: 6 pages, 7 figures, IEEE International Conference of Multimedia and Expo 201

    PaMM: Pose-aware Multi-shot Matching for Improving Person Re-identification

    Full text link
    Person re-identification is the problem of recognizing people across different images or videos with non-overlapping views. Although there has been much progress in person re-identification over the last decade, it remains a challenging task because appearances of people can seem extremely different across diverse camera viewpoints and person poses. In this paper, we propose a novel framework for person re-identification by analyzing camera viewpoints and person poses in a so-called Pose-aware Multi-shot Matching (PaMM), which robustly estimates people's poses and efficiently conducts multi-shot matching based on pose information. Experimental results using public person re-identification datasets show that the proposed methods outperform state-of-the-art methods and are promising for person re-identification from diverse viewpoints and pose variances.Comment: 12 pages, 12 figures, 4 table

    Illumination-Adaptive Person Re-identification

    Full text link
    Most person re-identification (ReID) approaches assume that person images are captured under relatively similar illumination conditions. In reality, long-term person retrieval is common, and person images are often captured under different illumination conditions at different times across a day. In this situation, the performances of existing ReID models often degrade dramatically. This paper addresses the ReID problem with illumination variations and names it as {\em Illumination-Adaptive Person Re-identification (IA-ReID)}. We propose an Illumination-Identity Disentanglement (IID) network to dispel different scales of illuminations away while preserving individuals' identity information. To demonstrate the illumination issue and to evaluate our model, we construct two large-scale simulated datasets with a wide range of illumination variations. Experimental results on the simulated datasets and real-world images demonstrate the effectiveness of the proposed framework.Comment: Accepted by TM

    Person Re-identification Using Visual Attention

    Full text link
    Despite recent attempts for solving the person re-identification problem, it remains a challenging task since a person's appearance can vary significantly when large variations in view angle, human pose, and illumination are involved. In this paper, we propose a novel approach based on using a gradient-based attention mechanism in deep convolution neural network for solving the person re-identification problem. Our model learns to focus selectively on parts of the input image for which the networks' output is most sensitive to and processes them with high resolution while perceiving the surrounding image in low resolution. Extensive comparative evaluations demonstrate that the proposed method outperforms state-of-the-art approaches on the challenging CUHK01, CUHK03, and Market 1501 datasets.Comment: Published at IEEE International Conference on Image Processing 201

    Robust Depth-based Person Re-identification

    Full text link
    Person re-identification (re-id) aims to match people across non-overlapping camera views. So far the RGB-based appearance is widely used in most existing works. However, when people appeared in extreme illumination or changed clothes, the RGB appearance-based re-id methods tended to fail. To overcome this problem, we propose to exploit depth information to provide more invariant body shape and skeleton information regardless of illumination and color change. More specifically, we exploit depth voxel covariance descriptor and further propose a locally rotation invariant depth shape descriptor called Eigen-depth feature to describe pedestrian body shape. We prove that the distance between any two covariance matrices on the Riemannian manifold is equivalent to the Euclidean distance between the corresponding Eigen-depth features. Furthermore, we propose a kernelized implicit feature transfer scheme to estimate Eigen-depth feature implicitly from RGB image when depth information is not available. We find that combining the estimated depth features with RGB-based appearance features can sometimes help to better reduce visual ambiguities of appearance features caused by illumination and similar clothes. The effectiveness of our models was validated on publicly available depth pedestrian datasets as compared to related methods for person re-identification.Comment: IEEE Transactions on Image Processing Early Acces

    Adversarial Open-World Person Re-Identification

    Full text link
    In a typical real-world application of re-id, a watch-list (gallery set) of a handful of target people (e.g. suspects) to track around a large volume of non-target people are demanded across camera views, and this is called the open-world person re-id. Different from conventional (closed-world) person re-id, a large portion of probe samples are not from target people in the open-world setting. And, it always happens that a non-target person would look similar to a target one and therefore would seriously challenge a re-id system. In this work, we introduce a deep open-world group-based person re-id model based on adversarial learning to alleviate the attack problem caused by similar non-target people. The main idea is learning to attack feature extractor on the target people by using GAN to generate very target-like images (imposters), and in the meantime the model will make the feature extractor learn to tolerate the attack by discriminative learning so as to realize group-based verification. The framework we proposed is called the adversarial open-world person re-identification, and this is realized by our Adversarial PersonNet (APN) that jointly learns a generator, a person discriminator, a target discriminator and a feature extractor, where the feature extractor and target discriminator share the same weights so as to makes the feature extractor learn to tolerate the attack by imposters for better group-based verification. While open-world person re-id is challenging, we show for the first time that the adversarial-based approach helps stabilize person re-id system under imposter attack more effectively.Comment: 17 pages, 3 figures, Accepted by European Conference on Computer Vision 201

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Orientation Driven Bag of Appearances for Person Re-identification

    Full text link
    Person re-identification (re-id) consists of associating individual across camera network, which is valuable for intelligent video surveillance and has drawn wide attention. Although person re-identification research is making progress, it still faces some challenges such as varying poses, illumination and viewpoints. For feature representation in re-identification, existing works usually use low-level descriptors which do not take full advantage of body structure information, resulting in low representation ability. %discrimination. To solve this problem, this paper proposes the mid-level body-structure based feature representation (BSFR) which introduces body structure pyramid for codebook learning and feature pooling in the vertical direction of human body. Besides, varying viewpoints in the horizontal direction of human body usually causes the data missing problem, i.e.i.e., the appearances obtained in different orientations of the identical person could vary significantly. To address this problem, the orientation driven bag of appearances (ODBoA) is proposed to utilize person orientation information extracted by orientation estimation technic. To properly evaluate the proposed approach, we introduce a new re-identification dataset (Market-1203) based on the Market-1501 dataset and propose a new re-identification dataset (PKU-Reid). Both datasets contain multiple images captured in different body orientations for each person. Experimental results on three public datasets and two proposed datasets demonstrate the superiority of the proposed approach, indicating the effectiveness of body structure and orientation information for improving re-identification performance.Comment: 13 pages, 15 figures, 3 tables, submitted to IEEE Transactions on Circuits and Systems for Video Technolog

    Multi-Channel Pyramid Person Matching Network for Person Re-Identification

    Full text link
    In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the color-texture distributions to address the problem of person re-identification. In particular, we learn separate deep representations for semantic-components and color-texture distributions from two person images and then employ pyramid person matching network (PPMN) to obtain correspondence representations. These correspondence representations are fused to perform the re-identification task. Further, the proposed framework is optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art literature, especially on the rank-1 recognition rate.Comment: 9 pages, 5 figures, 7 tables and accepted by the 32nd AAAI Conference on Artificial Intelligenc

    Distance-based Camera Network Topology Inference for Person Re-identification

    Full text link
    In this paper, we propose a novel distance-based camera network topology inference method for efficient person re-identification. To this end, we first calibrate each camera and estimate relative scales between cameras. Using the calibration results of multiple cameras, we calculate the speed of each person and infer the distance between cameras to generate distance-based camera network topology. The proposed distance-based topology can be applied adaptively to each person according to its speed and handle diverse transition time of people between non-overlapping cameras. To validate the proposed method, we tested the proposed method using an open person re-identification dataset and compared to state-of-the-art methods. The experimental results show that the proposed method is effective for person re-identification in the large-scale camera network with various people transition time.Comment: 10 pages, 11 figure
    corecore