403 research outputs found

    Learning from Heterogeneity: A Dynamic Learning Framework for Hypergraphs

    Full text link
    Graph neural network (GNN) has gained increasing popularity in recent years owing to its capability and flexibility in modeling complex graph structure data. Among all graph learning methods, hypergraph learning is a technique for exploring the implicit higher-order correlations when training the embedding space of the graph. In this paper, we propose a hypergraph learning framework named LFH that is capable of dynamic hyperedge construction and attentive embedding update utilizing the heterogeneity attributes of the graph. Specifically, in our framework, the high-quality features are first generated by the pairwise fusion strategy that utilizes explicit graph structure information when generating initial node embedding. Afterwards, a hypergraph is constructed through the dynamic grouping of implicit hyperedges, followed by the type-specific hypergraph learning process. To evaluate the effectiveness of our proposed framework, we conduct comprehensive experiments on several popular datasets with eleven state-of-the-art models on both node classification and link prediction tasks, which fall into categories of homogeneous pairwise graph learning, heterogeneous pairwise graph learning, and hypergraph learning. The experiment results demonstrate a significant performance gain (average 12.5% in node classification and 13.3% in link prediction) compared with recent state-of-the-art methods

    Identification of Online Users' Social Status via Mining User-Generated Data

    Get PDF
    With the burst of available online user-generated data, identifying online users’ social status via mining user-generated data can play a significant role in many commercial applications, research and policy-making in many domains. Social status refers to the position of a person in relation to others within a society, which is an abstract concept. The actual definition of social status is specific in terms of specific measure indicator. For example, opinion leadership measures individual social status in terms of influence and expertise in an online society, while socioeconomic status characterizes personal real-life social status based on social and economic factors. Compared with traditional survey method which is time-consuming, expensive and sometimes difficult, some efforts have been made to identify specific social status of users based on specific user-generated data using classic machine learning methods. However, in fact, regarding specific social status identification based on specific user-generated data, the specific case has several specific challenges. However, classic machine learning methods in existing works fail to address these challenges, which lead to low identification accuracy. Given the importance of improving identification accuracy, this thesis studies three specific cases on identification of online and offline social status. For each work, this thesis proposes novel effective identification method to address the specific challenges for improving accuracy. The first work aims at identifying users’ online social status in terms of topic-sensitive influence and knowledge authority in social community question answering sites, namely identifying topical opinion leaders who are both influential and expert. Social community question answering (SCQA) site, an innovative community question answering platform, not only offers traditional question answering (QA) services but also integrates an online social network where users can follow each other. Identifying topical opinion leaders in SCQA has become an important research area due to the significant role of topical opinion leaders. However, most previous related work either focus on using knowledge expertise to find experts for improving the quality of answers, or aim at measuring user influence to identify influential ones. In order to identify the true topical opinion leaders, we propose a topical opinion leader identification framework called QALeaderRank which takes account of both topic-sensitive influence and topical knowledge expertise. In the proposed framework, to measure the topic-sensitive influence of each user, we design a novel influence measure algorithm that exploits both the social and QA features of SCQA, taking into account social network structure, topical similarity and knowledge authority. In addition, we propose three topic-relevant metrics to infer the topical expertise of each user. The extensive experiments along with an online user study show that the proposed QALeaderRank achieves significant improvement compared with the state-of-the-art methods. Furthermore, we analyze the topic interest change behaviors of users over time and examine the predictability of user topic interest through experiments. The second work focuses on predicting individual socioeconomic status from mobile phone data. Socioeconomic Status (SES) is an important social and economic aspect widely concerned. Assessing individual SES can assist related organizations in making a variety of policy decisions. Traditional approach suffers from the extremely high cost in collecting large-scale SES-related survey data. With the ubiquity of smart phones, mobile phone data has become a novel data source for predicting individual SES with low cost. However, the task of predicting individual SES on mobile phone data also proposes some new challenges, including sparse individual records, scarce explicit relationships and limited labeled samples, unconcerned in prior work restricted to regional or household-oriented SES prediction. To address these issues, we propose a semi-supervised Hypergraph based Factor Graph Model (HyperFGM) for individual SES prediction. HyperFGM is able to efficiently capture the associations between SES and individual mobile phone records to handle the individual record sparsity. For the scarce explicit relationships, HyperFGM models implicit high-order relationships among users on the hypergraph structure. Besides, HyperFGM explores the limited labeled data and unlabeled data in a semi-supervised way. Experimental results show that HyperFGM greatly outperforms the baseline methods on individual SES prediction with using a set of anonymized real mobile phone data. The third work is to predict social media users’ socioeconomic status based on their social media content, which is useful for related organizations and companies in a range of applications, such as economic and social policy-making. Previous work leverage manually defined textual features and platform-based user level attributes from social media content and feed them into a machine learning based classifier for SES prediction. However, they ignore some important information of social media content, containing the order and the hierarchical structure of social media text as well as the relationships among user level attributes. To this end, we propose a novel coupled social media content representation model for individual SES prediction, which not only utilizes a hierarchical neural network to incorporate the order and the hierarchical structure of social media text but also employs a coupled attribute representation method to take into account intra-coupled and inter-coupled interaction relationships among user level attributes. The experimental results show that the proposed model significantly outperforms other stat-of-the-art models on a real dataset, which validate the efficiency and robustness of the proposed model

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)
    • 

    corecore