1,341 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Behavioral Privacy Risks and Mitigation Approaches in Sharing of Wearable Inertial Sensor Data

    Get PDF
    Wrist-worn inertial sensors in activity trackers and smartwatches are increasingly being used for daily tracking of activity and sleep. Wearable devices, with their onboard sensors, provide appealing mobile health (mHealth) platform that can be leveraged for continuous and unobtrusive monitoring of an individual in their daily life. As a result, an adaptation of wrist-worn devices in many applications (such as health, sport, and recreation) increases. Additionally, an increasing number of sensory datasets consisting of motion sensor data from wrist-worn devices are becoming publicly available for research. However, releasing or sharing these wearable sensor data creates serious privacy concerns of the user. First, in many application domains (such as mHealth, insurance, and health provider), user identity is an integral part of the shared data. In such settings, instead of identity privacy preservation, the focus is more on the behavioral privacy problem that is the disclosure of sensitive behaviors from the shared sensor data. Second, different datasets usually focus on only a select subset of these behaviors. But, in the event that users can be re-identified from accelerometry data, different databases of motion data (contributed by the same user) can be linked, resulting in the revelation of sensitive behaviors or health diagnoses of a user that was neither originally declared by a data collector nor consented by the user. The contributions of this dissertation are multifold. First, to show the behavioral privacy risk in sharing the raw sensor, this dissertation presents a detailed case study of detecting cigarette smoking in the field. It proposes a new machine learning model, called puffMarker, that achieves a false positive rate of 1/6 (or 0.17) per day, with a recall rate of 87.5%, when tested in a field study with 61 newly abstinent daily smokers. Second, it proposes a model-based data substitution mechanism, namely mSieve, to protect behavioral privacy. It evaluates the efficacy of the scheme using 660 hours of raw sensor data collected and demonstrates that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors. Finally, it analyzes the risks of user re-identification from wrist-worn sensor data, even after applying mSieve for protecting behavioral privacy. It presents a deep learning architecture that can identify unique micro-movement pattern in each wearer\u27s wrists. A new consistency-distinction loss function is proposed to train the deep learning model for open set learning so as to maximize re-identification consistency for known users and amplify distinction with any unknown user. In 10 weeks of daily sensor wearing by 353 participants, we show that a known user can be re-identified with a 99.7% true matching rate while keeping the false acceptance rate to 0.1% for an unknown user. Finally, for mitigation, we show that injecting even a low level of Laplace noise in the data stream can limit the re-identification risk. This dissertation creates new research opportunities on understanding and mitigating risks and ethical challenges associated with behavioral privacy

    Continuous Estimation of Smoking Lapse Risk from Noisy Wrist Sensor Data Using Sparse and Positive-Only Labels

    Get PDF
    Estimating the imminent risk of adverse health behaviors provides opportunities for developing effective behavioral intervention mechanisms to prevent the occurrence of the target behavior. One of the key goals is to find opportune moments for intervention by passively detecting the rising risk of an imminent adverse behavior. Significant progress in mobile health research and the ability to continuously sense internal and external states of individual health and behavior has paved the way for detecting diverse risk factors from mobile sensor data. The next frontier in this research is to account for the combined effects of these risk factors to produce a composite risk score of adverse behaviors using wearable sensors convenient for daily use. Developing a machine learning-based model for assessing the risk of smoking lapse in the natural environment faces significant outstanding challenges requiring the development of novel and unique methodologies for each of them. The first challenge is coming up with an accurate representation of noisy and incomplete sensor data to encode the present and historical influence of behavioral cues, mental states, and the interactions of individuals with their ever-changing environment. The next noteworthy challenge is the absence of confirmed negative labels of low-risk states and adequate precise annotations of high-risk states. Finally, the model should work on convenient wearable devices to facilitate widespread adoption in research and practice. In this dissertation, we develop methods that account for the multi-faceted nature of smoking lapse behavior to train and evaluate a machine learning model capable of estimating composite risk scores in the natural environment. We first develop mRisk, which combines the effects of various mHealth biomarkers such as stress, physical activity, and location history in producing the risk of smoking lapse using sequential deep neural networks. We propose an event-based encoding of sensor data to reduce the effect of noises and then present an approach to efficiently model the historical influence of recent and past sensor-derived contexts on the likelihood of smoking lapse. To circumvent the lack of confirmed negative labels (i.e., annotated low-risk moments) and only a few positive labels (i.e., sensor-based detection of smoking lapse corroborated by self-reports), we propose a new loss function to accurately optimize the models. We build the mRisk models using biomarker (stress, physical activity) streams derived from chest-worn sensors. Adapting the models to work with less invasive and more convenient wrist-based sensors requires adapting the biomarker detection models to work with wrist-worn sensor data. To that end, we develop robust stress and activity inference methodologies from noisy wrist-sensor data. We first propose CQP, which quantifies wrist-sensor collected PPG data quality. Next, we show that integrating CQP within the inference pipeline improves accuracy-yield trade-offs associated with stress detection from wrist-worn PPG sensors in the natural environment. mRisk also requires sensor-based precise detection of smoking events and confirmation through self-reports to extract positive labels. Hence, we develop rSmoke, an orientation-invariant smoking detection model that is robust to the variations in sensor data resulting from orientation switches in the field. We train the proposed mRisk risk estimation models using the wrist-based inferences of lapse risk factors. To evaluate the utility of the risk models, we simulate the delivery of intelligent smoking interventions to at-risk participants as informed by the composite risk scores. Our results demonstrate the envisaged impact of machine learning-based models operating on wrist-worn wearable sensor data to output continuous smoking lapse risk scores. The novel methodologies we propose throughout this dissertation help instigate a new frontier in smoking research that can potentially improve the smoking abstinence rate in participants willing to quit

    A 'one-size-fits-most' walking recognition method for smartphones, smartwatches, and wearable accelerometers

    Full text link
    The ubiquity of personal digital devices offers unprecedented opportunities to study human behavior. Current state-of-the-art methods quantify physical activity using 'activity counts,' a measure which overlooks specific types of physical activities. We proposed a walking recognition method for sub-second tri-axial accelerometer data, in which activity classification is based on the inherent features of walking: intensity, periodicity, and duration. We validated our method against 20 publicly available, annotated datasets on walking activity data collected at various body locations (thigh, waist, chest, arm, wrist). We demonstrated that our method can estimate walking periods with high sensitivity and specificity: average sensitivity ranged between 0.92 and 0.97 across various body locations, and average specificity for common daily activities was typically above 0.95. We also assessed the method's algorithmic fairness to demographic and anthropometric variables and measurement contexts (body location, environment). Finally, we have released our method as open-source software in MATLAB and Python.Comment: 39 pages, 4 figures (incl. 1 supplementary), and 5 tables (incl. 2 supplementary

    Review of Wearable Devices and Data Collection Considerations for Connected Health

    Get PDF
    Wearable sensor technology has gradually extended its usability into a wide range of well-known applications. Wearable sensors can typically assess and quantify the wearer’s physiology and are commonly employed for human activity detection and quantified self-assessment. Wearable sensors are increasingly utilised to monitor patient health, rapidly assist with disease diagnosis, and help predict and often improve patient outcomes. Clinicians use various self-report questionnaires and well-known tests to report patient symptoms and assess their functional ability. These assessments are time consuming and costly and depend on subjective patient recall. Moreover, measurements may not accurately demonstrate the patient’s functional ability whilst at home. Wearable sensors can be used to detect and quantify specific movements in different applications. The volume of data collected by wearable sensors during long-term assessment of ambulatory movement can become immense in tuple size. This paper discusses current techniques used to track and record various human body movements, as well as techniques used to measure activity and sleep from long-term data collected by wearable technology devices

    Online Heart Rate Prediction using Acceleration from a Wrist Worn Wearable

    Full text link
    In this paper we study the prediction of heart rate from acceleration using a wrist worn wearable. Although existing photoplethysmography (PPG) heart rate sensors provide reliable measurements, they use considerably more energy than accelerometers and have a major impact on battery life of wearable devices. By using energy-efficient accelerometers to predict heart rate, significant energy savings can be made. Further, we are interested in understanding patient recovery after a heart rate intervention, where we expect a variation in heart rate over time. Therefore, we propose an online approach to tackle the concept as time passes. We evaluate the methods on approximately 4 weeks of free living data from three patients over a number of months. We show that our approach can achieve good predictive performance (e.g., 2.89 Mean Absolute Error) while using the PPG heart rate sensor infrequently (e.g., 20.25% of the samples).Comment: MLMH 2018: 2018 KDD Workshop on Machine Learning for Medicine and Healthcar
    • …
    corecore