2,533 research outputs found

    An Experiment in Model Driven Architecture for e-Enterprise Systems

    Get PDF
    OMG's Model Driven Architecture demonstrates how a system's specification model can be used within the process of creating supporting software implementations. This article documents the findings of an experiment aimed at determining the extent to which this method of software engineering can be used within the domain of e-Enterprise systems

    Upon a Message-Oriented Trading API

    Get PDF
    In this paper, we introduce the premises for a trading system application-programming interface (API) based on a message-oriented middleware (MOM), and present the results of our research regarding the design and the implementation of a simulation-trading system employing a service-oriented architecture (SOA) and messaging. Our research has been conducted with the aim of creating a simulation-trading platform, within the academic environment, that will provide both the foundation for future experiments with trading systems architectures, components, APIs, and the framework for research on trading strategies, trading algorithm design, and equity markets analysis tools. Mathematics Subject Classification: 68M14 (distributed systems).Trading System API, Straight-Through Processing, Distributed Computing, Service-Oriented Architecture (SOA), Message-Oriented Middleware (MOM), Java Message Service (JMS), OpenMQ

    Fine Grained Component Engineering of Adaptive Overlays: Experiences and Perspectives

    Get PDF
    Recent years have seen significant research being carried out into peer-to-peer (P2P) systems. This work has focused on the styles and applications of P2P computing, from grid computation to content distribution; however, little investigation has been performed into how these systems are built. Component based engineering is an approach that has seen successful deployment in the field of middleware development; functionality is encapsulated in ‘building blocks’ that can be dynamically plugged together to form complete systems. This allows efficient, flexible and adaptable systems to be built with lower overhead and development complexity. This paper presents an investigation into the potential of using component based engineering in the design and construction of peer-to-peer overlays. It is highlighted that the quality of these properties is dictated by the component architecture used to implement the system. Three reusable decomposition architectures are designed and evaluated using Chord and Pastry case studies. These demonstrate that significant improvements can be made over traditional design approaches resulting in much more reusable, (re)configurable and extensible systems

    Web-course search engine : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The World Wide Web is an amazing place that people's lives more and more rely on. Especially, for the young generation, they spend a significant amount of their play and study time using the Internet. Many tools have been developed to help the educational users in finding educational resources. These tools include various search engines. Web directories and educational domain gateways. Nevertheless, these systems have many weaknesses that made them unsuitable for the specific search needs of the learners. The research presented in this thesis describes the development of the Web-course search engine, which is a friendly, efficient and accurate helper for the learners to get what they want in the vast Internet ocean. The most attractive feature of this system is that the system uses one universal language, which lets the searchers and the resources "communicate" with each other. Then the learner searchers can find the Web-based educational resources that are most fit to their needs and course providers can provide all necessary information about their courseware. This universal language is one widely acceptable Metadata standard. Following the Metadata standard, the system collects exact information about educational resources, provides adequate search parameters for search and returns evaluative results. By using the Web-course search engine, the learners and the other educational users are able to find useful, valuable and related educational resources more effectively and efficiently. Some improvement suggestions of the search mechanism in the World Wide Web have been brought forward for the future research as a result of this project

    Unification of Transactions and Replication in Three-Tier Architectures Based on CORBA

    Get PDF
    In this paper, we describe a software infrastructure that unifies transactions and replication in three-tier architectures and provides data consistency and high availability for enterprise applications. The infrastructure uses transactions based on the CORBA object transaction service to protect the application data in databases on stable storage, using a roll-backward recovery strategy, and replication based on the fault tolerant CORBA standard to protect the middle-tier servers, using a roll-forward recovery strategy. The infrastructure replicates the middle-tier servers to protect the application business logic processing. In addition, it replicates the transaction coordinator, which renders the two-phase commit protocol nonblocking and, thus, avoids potentially long service disruptions caused by failure of the coordinator. The infrastructure handles the interactions between the replicated middle-tier servers and the database servers through replicated gateways that prevent duplicate requests from reaching the database servers. It implements automatic client-side failover mechanisms, which guarantee that clients know the outcome of the requests that they have made, and retries aborted transactions automatically on behalf of the clients

    Migration from client/server architecture to internet computing architecture

    Get PDF
    The Internet Computing Architecture helps in providing a object-based infrastructure that can be used by the application developers to design, develop, and deploy the ntiered enterprise applications and services. For years of distributed application development, the Internet Computing Architecture has helped in providing various techniques and infrastructure software for the successful deployment of various systems, and established a foundation for the promotion of re-use and component oriented development. Object-oriented analysis is at the beginning of this architecture, which is carried through deploying and managing of finished systems. This architecture is multi-platform, multi-lingual, standards-based, and open that offers unparalleled integration capability. And for the development of mission critical systems in record time it has allowed for the reuse of the infrastructure components. This paper provides a detailed overview of the Internet Computing Architecture and the way it is applied to designing systems which can range from simple two-tier applications to n-tier Web/Object enterprise systems. Even for the best software developers and managers it is very hard to sort through alternative solutions in today\u27s business application development challenges. The problems with the potential solutions were not that complex now that the web has provided the medium for large-scale distributed computing. To implement an infrastructure for the support of applications architecture and to foster the component-oriented development and reuse is an extraordinary challenge. Further, to scale the needs of large enterprises and the Web/Internet the advancement in the multi-tiered middleware software have made the development of object-oriented systems more difficult. The Internet Computing Architecture defines a scaleable architecture, which can provide the necessary software components, which forms the basis of the solid middleware foundation and can address the different application types. For the software development process to be component-oriented the design and development methodologies are interwoven. The biggest advantage of the Internet Computing Architecture is that developers can design object application servers that can simultaneously support two- and three-tier Client/Server and Object/Web applications. This kind of flexibility allows different business objects to be reused by a large number of applications that not only supports a wide range of application architectures but also offers the flexibility in infrastructure for the integration of data sources. The server-based business objects are managed by runtime services with full support for application to be partitioned in a transactional-secure distributed environment. So for the environments that a supports high transaction volumes and a large number of users this offers a high scaleable solution. The integration of the distributed object technology with protocols of the World Wide Web is Internet Computing Architecture. Alternate means of communication between a browser on client machine and server machines are provided by various web protocols such as Hypertext Transfer Protocol and Internet Inter-ORB Protocol [NOP]. Protocols like TCP/IP also provides the addressing protocols and packetoriented transport for the Internet and Intranet communications. The recent advancements in the field of networking and worldwide web technology has promoted a new network-centric computing structure. World Wide Web evolves the global economy infrastructure both on the public and corporate Internet\u27s. The competition is growing between technologies to provide the infrastructure for distributed large-scale applications. These technologies emerge from academia, standard activities and individual vendors. Internet Computing Architecture is a comprehensive, open, Network-based architecture that provides extensibility for the design of distributed environments. Internet Computing Architecture also provides a clear understanding to integrate client/server computing with distributed object architectures and the Internet. This technology also creates the opportunity for a new emerging class of extremely powerful operational, collaboration, decision support, and e-commerce solutions which will catalyze the growth of a new networked economy based on intrabusiness, business -to-business (B2B) and business-to-consumer (B2C) electronic transactions. These network solutions would be able to incorporate legacy mainframe systems, emerging applications as well as existing client/server environment, where still most of the world\u27s mission-critical applications run. Internet Computing Architecture is the industry\u27s only cross-platform infrastructure to develop and deploy network-centric, object-based, end-to-end applications across the network. Open and de facto standards are at the core of the Internet computing architecture such as: Hyper Text Transfer Protocol (HTTP)/ Hyper Text Markup Language (HTML)/ Extensible Markup Language (XML) and Common Object Request Broker Architecture (CORBA). It has recognition, as the industry\u27s most advanced and practical technology solution for the implementation of a distributed object environment, including Interface Definition Language (IDL) for languageneutral interfaces and Internet Inter Operability (MOP) for object interoperability. Programming languages such as JAVA provides programmable, extensible and portable solutions throughout the Internet Computing Architecture. Internet Computing Architecture not only provides support, but also enhances ActiveX/Component Object Model (COM) clients through open COM/CORBA interoperability specifications. For distributed object-programming Java has also emerged as the de facto standard within the Internet/Intranet arena, making Java ideally suited to the distributed object nature of the Internet Computing Architecture. The portability that it offers across multi-tiers and platforms support open standards and makes it an excellent choice for cartridge development across all tiers

    WebFlow - A Visual Programming Paradigm for Web/Java Based Coarse Grain Distributed Computing

    Get PDF
    We present here the recent work at NPAC aimed at developing WebFlow---a general purpose Web based visual interactive programming environment for coarse grain distributed computing. We follow the 3-tier architecture with the central control and integration WebVM layer in tier-2, interacting with the visual graph editor applets in tier-1 (front-end) and the legacy systems in tier-3. WebVM is given by a mesh of Java Web servers such as Jeeves from JavaSoft or Jigsaw from MIT/W3C. All system control structures are implemented as URL-addressable servlets which enable Web browser-based authoring, monitoring, publication, documentation and software distribution tools for distributed computing. We view WebFlow/WEbVM as a promising programming paradigm and coordination model for the exploding volume of Web/Java software, and we illustrate it in a set of ongoing application development activities
    • 

    corecore