1,570 research outputs found

    A max-flow approach to improved lower bounds for quadratic unconstrained binary optimization (QUBO)

    Get PDF
    AbstractThe “roof dual” of a QUBO (Quadratic Unconstrained Binary Optimization) problem has been introduced in [P.L. Hammer, P. Hansen, B. Simeone, Roof duality, complementation and persistency in quadratic 0–1 optimization, Mathematical Programming 28 (1984) 121–155]; it provides a bound to the optimum value, along with a polynomial test of the sharpness of this bound, and (due to a “persistency” result) it also determines the values of some of the variables at the optimum. In this paper we provide a graph-theoretic approach to provide bounds, which includes as a special case the roof dual bound, and show that these bounds can be computed in O(n3) time by using network flow techniques. We also obtain a decomposition theorem for quadratic pseudo-Boolean functions, improving the persistency result of [P.L. Hammer, P. Hansen, B. Simeone, Roof duality, complementation and persistency in quadratic 0–1 optimization, Mathematical Programming 28 (1984) 121–155]. Finally, we show that the proposed bounds (including roof duality) can be applied in an iterated way to obtain significantly better bounds. Computational experiments on problems up to thousands of variables are presented

    Combinatorial persistency criteria for multicut and max-cut

    Full text link
    In combinatorial optimization, partial variable assignments are called persistent if they agree with some optimal solution. We propose persistency criteria for the multicut and max-cut problem as well as fast combinatorial routines to verify them. The criteria that we derive are based on mappings that improve feasible multicuts, respectively cuts. Our elementary criteria can be checked enumeratively. The more advanced ones rely on fast algorithms for upper and lower bounds for the respective cut problems and max-flow techniques for auxiliary min-cut problems. Our methods can be used as a preprocessing technique for reducing problem sizes or for computing partial optimality guarantees for solutions output by heuristic solvers. We show the efficacy of our methods on instances of both problems from computer vision, biomedical image analysis and statistical physics

    Generalized roof duality and bisubmodular functions

    Full text link
    Consider a convex relaxation f^\hat f of a pseudo-boolean function ff. We say that the relaxation is {\em totally half-integral} if f^(x)\hat f(x) is a polyhedral function with half-integral extreme points xx, and this property is preserved after adding an arbitrary combination of constraints of the form xi=xjx_i=x_j, xi=1xjx_i=1-x_j, and xi=γx_i=\gamma where \gamma\in\{0, 1, 1/2} is a constant. A well-known example is the {\em roof duality} relaxation for quadratic pseudo-boolean functions ff. We argue that total half-integrality is a natural requirement for generalizations of roof duality to arbitrary pseudo-boolean functions. Our contributions are as follows. First, we provide a complete characterization of totally half-integral relaxations f^\hat f by establishing a one-to-one correspondence with {\em bisubmodular functions}. Second, we give a new characterization of bisubmodular functions. Finally, we show some relationships between general totally half-integral relaxations and relaxations based on the roof duality.Comment: 14 pages. Shorter version to appear in NIPS 201

    Maximum Persistency in Energy Minimization

    Full text link
    We consider discrete pairwise energy minimization problem (weighted constraint satisfaction, max-sum labeling) and methods that identify a globally optimal partial assignment of variables. When finding a complete optimal assignment is intractable, determining optimal values for a part of variables is an interesting possibility. Existing methods are based on different sufficient conditions. We propose a new sufficient condition for partial optimality which is: (1) verifiable in polynomial time (2) invariant to reparametrization of the problem and permutation of labels and (3) includes many existing sufficient conditions as special cases. We pose the problem of finding the maximum optimal partial assignment identifiable by the new sufficient condition. A polynomial method is proposed which is guaranteed to assign same or larger part of variables than several existing approaches. The core of the method is a specially constructed linear program that identifies persistent assignments in an arbitrary multi-label setting.Comment: Extended technical report for the CVPR 2014 paper. Update: correction to the proof of characterization theore

    An Extended Kalman Filter for Data-enabled Predictive Control

    Full text link
    The literature dealing with data-driven analysis and control problems has significantly grown in the recent years. Most of the recent literature deals with linear time-invariant systems in which the uncertainty (if any) is assumed to be deterministic and bounded; relatively little attention has been devoted to stochastic linear time-invariant systems. As a first step in this direction, we propose to equip the recently introduced Data-enabled Predictive Control algorithm with a data-based Extended Kalman Filter to make use of additional available input-output data for reducing the effect of noise, without increasing the computational load of the optimization procedure
    corecore