392 research outputs found

    An Energy Model Using Sleeping Algorithms for Wireless Sensor Networks under Proactive and Reactive Protocols: A Performance Evaluation

    Get PDF
    The continuous evolution of the Internet of Things (IoT) makes it possible to connect everyday objects to networks in order to monitor physical and environmental conditions, which is made possible due to wireless sensor networks (WSN) that enable the transfer of data. However, it has also brought about many challenges that need to be addressed, such as excess energy consumption. Accordingly, this paper presents and analyzes wireless network energy models using five different communication protocols: Ad Hoc On-Demand Distance Vector (AODV), Multi-Parent Hierarchical (MPH), Dynamic Source Routing (DSR), Low Energy Adaptive Clustering Hierarchy (LEACH) and Zigbee Tree Routing (ZTR). First, a series of metrics are defined to establish a comparison and determine which protocol exhibits the best energy consumption performance. Then, simulations are performed and the results are compared with real scenarios. The energy analysis is conducted with three proposed sleeping algorithms: Modified Sleeping Crown (MSC), Timer Sleeping Algorithm (TSA), and Local Energy Information (LEI). Thereafter, the proposed algorithms are compared by virtue of two widely used wireless technologies, namely Zigbee and WiFi. Indeed, the results suggest that Zigbee has a better energy performance than WiFi, but less redundancy in the topology links, and this study favors the analysis with the simulation of protocols with different nature. The tested scenario is implemented into a university campus to show a real network running

    Kablosuz sensör ağlarinda yönlü antenlerle enerji̇ veri̇mli̇ yönlendi̇rme

    Get PDF
    Without measurements, sustainable development effort can not progress in the right direction. Wireless sensor networks are vital for monitoring in real time and making accurate measurements for such an endeavor. However small energy storage in the sensors can become a bottleneck if the wireless sensor network is not optimized at the hardware and software level. Directional antennas are such optimization technologies at the hardware level. They have advantages over the omnidirectional antennas, such as high gain, less interference, longer transmission range, and less power consumption. In wireless sensor networks, most of the energy is consumed for communication. Considering the limited energy in small scale batteries of the sensors, energy efficient (aware) routing, is one of the most important software optimization techniques. The main goal of the technique is to improve the lifetime of the wireless sensor networks. In the light of these observations, it is desirable to do a coupled design of directional antennas with network software, for fully exploiting the advantages offered by directional antenna technology. In this thesis, the possibilities of doing such integrated design are surveyed and improvements are suggested. The design of the proposed microstrip patch antenna array is discussed and the performance characteristics are assessed through simulations. In the benchmarks, the proposed routing method showed improvements in energy usage compared to the existing approaches.Ölçümler olmadan sürdürülebilir kalkınma çabaları doğru yönde ilerleyemez. Bu tür çabalar için, kablosuz sensör ağları, gerçek zamanlı olarak izleme ve kesin ölçümler yapmak için vazgeçilemez unsurdur. Ancak, sensör ağı, donanım ve yazılım düzeylerinde optimize edilmemişse, sensörlerde enerji yetersizliği görülebilinir. Yönlü antenler, donanım düzeyinde uygulanan optimizasyon teknolojilerinden biri olmakla birlikte, çok yönlü antenlerden farklı olarak, yüksek kazanç, daha az parazit, daha uzun iletim mesafesi ve daha az güç tüketimi sağlarlar. Kablosuz sensör ağlarında enerjinin çoğu iletişim için tüketilir. Sensörlerdeki limitli enerjili küçük ölçekli piller göz önüne alındığında, yazılım düzeyindeki önemli metodlardan biri olan enerji verimli (duyarlı) yönlendirme protokolü, kablosuz sensör ağının genel enerji kullanımını optimize etmek ve ömrünü uzatmak için gereklidir. Bu gözlemlerin ışığında, yönlü anten teknolojisinin sunduğu potansiyel avantajlardan tam olarak yararlanmak için, yönlü antenlerin ağ yazılımıyla birlikte entegre tasarımını yapmak arzu edilir. Bu tezde, böyle bir entegre tasarımın yapılma olasılıkları araştırılmış ve iyileştirmeler önerilmiştir. Tezde, küçük şeritli yamalı anten dizisinin tasarımı tartışılmış ve performans karakteristikleri simulasyonlarla ölçülmüştür. Önerilen yönlendirme algoritması, diğer yönlendirme algoritmaları ile karşılaştırıldığında, enerji kullanımında iyileştirmeler göstermiştirM.S. - Master of Scienc

    New Architectures for ubiquitous networks : use and adaptation of internet protocols over wireless sensor networks

    Get PDF
    This thesis focuses on the study of low-resource demanding protocols, communication techniques and software solutions to evaluate, optimise and implement Web service in WSNs. We start analysing the Web service architectures in order to choose the most appropriate for the constraints of WSNs, which is REST. Based on this analysis, we review the state-of-the-art of protocols that allows implementing REST Web services. To this end, we adopt the IEEE 802.15.4 standard for the physical and data-link layers, 6LoWPAN for the network layer and CoAP for the application layer. 6LoWPAN defines two forwarding techniques, which are called mesh under (MU) and route over (RO). It also provides a mechanism to fragment packets, which is called 6LoWPAN fragmentation. In part of the thesis, we study the effects that MU and RO have on communications using 6LoWPAN fragmentation. In particular, MU does not prevent forwarding unnecessary fragments and out-of-order delivery, which could lead to an inefficient use of bandwidth and a growth of energy consumption. We propose, then, a novel technique able to improve the performance of MU with fragmented packets, which we refer to as controlled mesh under (CMU). The results of a performance evaluation in a real WSN show that CMU is able to enhance the performance of MU by reducing its packet loss and end-to-end delay. In 6LoWPAN fragmentation, the loss of a fragment forces the retransmission of the entire packet. To overcome this limitation, CoAP defines blockwise transfer. It splits the packet into blocks and sends each one in reliable transactions, which introduces a significant communication overhead. We propose a novel analytical model to study blockwise and 6LoWPAN fragmentation, which is validated trough Monte Carlo simulations. Both techniques are compared in terms of reliability and delay. The results show that 6LoWPAN fragmentation is preferable for delay-constrained applications. For highly congested networks, blockwise slightly outperforms 6LoWPAN fragmentation in terms of reliability. CoAP defines the observe option to allow a client to register to a resource exposed by a server and to receive updates of its state. Existing QoS in the observe option supports partially timeliness. It allows specifying the validity of an update but it does not guarantee its on-time delivery. This approach is inefficient and does not consider applications, i.e. e-health, that requires the delivery of an update within a deadline. With this limitation in mind, we design and evaluate a novel mechanism for update delivery based on priority. The evaluation proves that implementing a delivery order improves the delay and delivery ratio of updates. Our proposal is also able to reduce the energy consumption allowing clients to express the class of updates that they wish to receive. In part of this thesis, we present our original library for TinyOS, which we referred to as TinyCoAP, and the design and implementation of a CoAP proxy. We compare TinyCoAP to CoapBlip, which is the CoAP implementation distributed with TinyOS. TinyCoAP proves to be able to reach a high code optimization and to reduce the impact over the memory of WSN nodes. The evaluation includes also the analysis of the CoAP reliability mechanism, which was still uncovered in the literature. As a novelty, we also compare CoAP with HTTP considering different solutions for the transport layer protocol such as UDP and persistent TCP connections. The CoAP proxy enables Web applications to transparently access the resources hosted in CoAP devices. It supports long-lived communications by including the WebSocket protocol. It also supports Web applications that use the traditional HTTP long-polling technique. Finally, one of the main contributions of the proxy design is the proposal of a standard URI path format to be used by Web applications to access to a CoAP resource.Esta tesis se enfoca en el estudio de protocolos de bajo consumo, técnicas de comunicación y software con el fin de evaluar, optimizar y desarrollar servicios Web en WSNs. Empezamos analizando la arquitectura de servicios Web con el objetivo de elegir la arquitectura más apropiada debido a las limitaciones de WSNs. Ésta se denomina REST. En base a este análisis, revisamos el estado del arte de los protocolos que permiten desarrollar servicios Web. Con este objetivo adoptamos el estándar IEEE 802.15.4 por la capa física y de enlace, 6LoWPAN por la de red y CoAP por la capa de aplicación. 6LoWPAN define dos técnicas de enrutamiento, denominadas 'Mesh Under' (MU) y 'Route Over' (RO). Asimismo ofrece un mecanismo para fragmentar paquetes, llamado 6LoWPAN fragmentation. En parte de la tesis estudiamos los efectos que MU y RO tienen sobre la comunicación que utiliza 6LoWPAN fragmentation. En particular, MU no previene enrutar fragmentos innecesarios y la entrega fuera de orden, lo cual podría provocar un uso ineficiente de ancho de banda y un crecimiento del consumo energía. Proponemos entonces nueva técnica capaz de mejorar las prestaciones de MU con paquetes fragmentados que denominamos 'Controlled Mesh Under' (CMU). Los resultados de una evaluación en una WSN real demuestran que CMU es capaz de mejorar las prestaciones de MU reduciendo la pérdida de paquetes y el retraso end-to-end. En 6LoWPAN fragmentation, la pérdida de un fragmento causa la retransmisión del paquete entero. Para evitar esta limitación CoAP define blockwise transfer. Esto divide el paquete en bloques y los envía en comunicaciones fiables provocando overhead. Proponemos un nuevo modelo analítico para estudiar blockwise y 6LoWPAN fragmentation cuya validación se realiza mediante simulaciones de Monte Carlo. Ambas técnicas se comparan en términos de fiabilidad y retraso. Los resultados muestran que es preferible usar 6LoWPAN fragmentation para las aplicaciones con restricciones en retraso. Para las redes mas congestionadas, blockwise mejora ligeramente 6LoWPAN fragmentation en términos de fiabilidad. CoAP define la opción observe para permitir a un cliente registrarse a un recurso proporcionado por un servidor y recibir actualizaciones de su estado. La QoS ofrecida por la opción observe proporciona soporte parcial por el timeliness. Esta permite especificar la validez de una actualización pero no garantiza su entrega a tiempo. Este enfoque es ineficiente y no incluye aplicaciones, como por ejemplo e-health que requieren la entrega de las actualizaciones en un plazo determinado. Teniendo en cuenta esta limitación, diseñamos y evaluamos un mecanismo novedoso para la entrega de actualizaciones basada en la prioridad. La evaluación demuestra que la implementación de una orden de entrega mejora la tasa de llegada y el retraso de las actualizaciones. Nuestra propuesta es capaz de reducir el consumo de energía permitiendo a los clientes expresar el tipo de actualización que desean recibir. En parte de esta tesis presentamos nuestra librería original pro TinyOS a la que nos referimos como TinyCoAP, así como el diseño y desarrollo de un Proxy CoAP. Comparamos TinyCoAP a CoapBlip, que es la aplicación distribuida con TinyOS. TinyCoAP demuestra ser capaz de alcanzar una alta optimización de código y reducir el impacto sobre la memoria de nodos de WSNs. La evaluación también incluye el análisis de la fiabilidad de CoAP que no había sido estudiada en la literatura. Como novedad también comparamos CoAP con HTTP, considerando diferentes soluciones para el protocolo de transporte como UDP y conexiones TCP persistentes. El Proxy CoAP permite a las aplicaciones Web acceder de manera transparente a los recursos almacenados en dispositivos CoAP. Éste incluye el protocolo WebSocket, que permite el establecimiento de conexiones long-lived. También permite el uso de aplicaciones Web con la tradicional técnica HTTP long-pollin

    Modelling and performability evaluation of Wireless Sensor Networks

    Get PDF
    This thesis presents generic analytical models of homogeneous clustered Wireless Sensor Networks (WSNs) with a centrally located Cluster Head (CH) coordinating cluster communication with the sink directly or through other intermediate nodes. The focus is to integrate performance and availability studies of WSNs in the presence of sensor nodes and channel failures and repair/replacement. The main purpose is to enhance improvement of WSN Quality of Service (QoS). Other research works also considered in this thesis include modelling of packet arrival distribution at the CH and intermediate nodes, and modelling of energy consumption at the sensor nodes. An investigation and critical analysis of wireless sensor network architectures, energy conservation techniques and QoS requirements are performed in order to improve performance and availability of the network. Existing techniques used for performance evaluation of single and multi-server systems with several operative states are investigated and analysed in details. To begin with, existing approaches for independent (pure) performance modelling are critically analysed with highlights on merits and drawbacks. Similarly, pure availability modelling approaches are also analysed. Considering that pure performance models tend to be too optimistic and pure availability models are too conservative, performability, which is the integration of performance and availability studies is used for the evaluation of the WSN models developed in this study. Two-dimensional Markov state space representations of the systems are used for performability modelling. Following critical analysis of the existing solution techniques, spectral expansion method and system of simultaneous linear equations are developed and used to solving the proposed models. To validate the results obtained with the two techniques, a discrete event simulation tool is explored. In this research, open queuing networks are used to model the behaviour of the CH when subjected to streams of traffic from cluster nodes in addition to dynamics of operating in the various states. The research begins with a model of a CH with an infinite queue capacity subject to failures and repair/replacement. The model is developed progressively to consider bounded queue capacity systems, channel failures and sleep scheduling mechanisms for performability evaluation of WSNs. Using the developed models, various performance measures of the considered system including mean queue length, throughput, response time and blocking probability are evaluated. Finally, energy models considering mean power consumption in each of the possible operative states is developed. The resulting models are in turn employed for the evaluation of energy saving for the proposed case study model. Numerical solutions and discussions are presented for all the queuing models developed. Simulation is also performed in order to validate the accuracy of the results obtained. In order to address issues of performance and availability of WSNs, current research present independent performance and availability studies. The concerns resulting from such studies have therefore remained unresolved over the years hence persistence poor system performance. The novelty of this research is a proposed integrated performance and availability modelling approach for WSNs meant to address challenges of independent studies. In addition, a novel methodology for modelling and evaluation of power consumption is also offered. Proposed model results provide remarkable improvement on system performance and availability in addition to providing tools for further optimisation studies. A significant power saving is also observed from the proposed model results. In order to improve QoS for WSN, it is possible to improve the proposed models by incorporating priority queuing in a mixed traffic environment. A model of multi-server system is also appropriate for addressing traffic routing. It is also possible to extend the proposed energy model to consider other sleep scheduling mechanisms other than On-demand proposed herein. Analysis and classification of possible arrival distribution of WSN packets for various application environments would be a great idea for enabling robust scientific research

    An approach to understand network challenges of wireless sensor network in real-world environments

    Get PDF
    The demand for large-scale sensing capabilities and scalable communication networks to monitor and control entities within smart buildings have fuelled the exponential growth in Wireless Sensor Network (WSN). WSN proves to be an attractive enabler because of its accurate sensing, low installation cost and flexibility in sensor placement. While WSN offers numerous benefits, it has yet to realise its full potential due to its susceptibility to network challenges in the environment that it is deployed. Particularly, spatial challenges in the indoor environment are known to degrade WSN communication reliability and have led to poor estimations of link quality. Existing WSN solutions often generalise all link failures and tackle them as a single entity. However, under the persistent influence of spatial challenges, failing to provide precise solutions may cause further link failures and higher energy consumption of battery-powered devices. Therefore, it is crucial to identify the causes of spatial- related link failures in order to improve WSN communication reliability. This thesis investigates WSN link failures under the influence of spatial challenges in real-world indoor environments. Novel and effective strategies are developed to evaluate the WSN communication reliability. By distinguishing between spatial challenges such as a poorly deployed environment and human movements, solutions are devised to reduce link failures and improve the lifespans of energy constraint WSN nodes. In this thesis, WSN test beds using proprietary wireless sensor nodes are developed and deployed in both controlled and uncontrolled office environments. These test beds provide diverse platforms for investigation into WSN link quality. In addition, a new data extraction feature called Network Instrumentation (NI) is developed and implemented onto the communication stacks of wireless sensor nodes to collect ZigBee PRO parameters that are under the influence of environmental dynamics. To understand the relationships between WSN and Wi-Fi devices communications, an investigation on frequency spectrum sharing is conducted between IEEE 802.15.4 and IEEE 802.11 bgn standards. It is discovered that the transmission failure of WSN nodes under persistent Wi-Fi interference is largely due to channel access failure rather than corrupted packets. The findings conclude that both technologies can co- exist as long as there is sufficient frequency spacing between Wi-Fi and WSN communication and adequate operating distance between the WSN nodes, and between the WSN nodes and the Wi-Fi interference source. Adaptive Network-based Fuzzy Inference System (ANFIS) models are developed to predict spatial challenges in an indoor environment. These challenges are namely, “no failure”, “failure due to poorly deployed environment” and “failure due to human movement”. A comparison of models has found that the best-produced model represents the properties of signal strength, channel fluctuations, and communication success rates. It is recognised that the interpretability of ANFIS models have reduced due to the “curse of dimensionality”. Hence, Non-Dominated Sorting Genetic Algorithm (NSGA-II) technique is implemented to reduce the complexity of these ANFIS models. This is followed by a Fuzzy rule sensitivity analysis, where the impacts of Fuzzy rules on model accuracy are found to be dependent on factors such as communication range and controlled or uncontrolled environment. Long-term WSN routing stability is measured, taking into account the adaptability and robustness of routing paths in the real-world environments. It is found that routing stability is subjected to the implemented routing protocol, deployed environment and routing options available. More importantly, the probability of link failures can be as high as 29.9% when a next hop’s usage rate falls less than 10%. This suggests that a less dominant next hop is subjected to more link failures and is short-lived. Overall, this thesis brings together diverse WSN test beds in real-world indoor environments and a new data extraction platform to extract link quality parameters from ZigBee PRO stack for a representative assessment of WSN link quality. This produces realistic perspectives of the interactions between WSN communication reliability and the environmental dynamics, particularly spatial challenges. The outcomes of this work include an in-depth system level understanding of real-world deployed applications and an insightful measure of large-scale WSN communication performance. These findings can be used as building blocks for a reliable and sustainable network architecture built on top of resource–constrained WSN

    Energy efficiency in data collection wireless sensor networks

    Get PDF
    This dissertation studies the problem of energy efficiency in resource constrained and heterogeneous wireless sensor networks (WSNs) for data collection applications in real-world scenarios. The problem is addressed from three different perspectives: network routing, node energy profiles, and network management. First, the energy efficiency in a WSN is formulated as a load balancing problem, where the routing layer can diagnose and exploit the WSN topology redundancy to reduce the data traffic processed in critical nodes, independent of their hardware platform, improving their energy consumption and extending the network lifetime. We propose a new routing strategy that extends traditional cost-based routing protocols and improves their energy efficiency, while maintaining high reliability. The evaluation of our approach shows a reduction in the energy consumption of the routing layer in the busiest nodes ranging from 11% to 59%, while maintaining over 99% reliability in WSN data collection applications. Second, a study of the effect of the MAC layer on the network energy efficiency is performed based on the nodes energy consumption profile. The resulting energy profiles reveal significant differences in the energy consumption of WSN nodes depending on their external sensors, as well as their sensitivity to changes in network traffic dynamics. Finally, the design of a general integrated framework and data management system for heterogeneous WSNs is presented. This framework not only allows external users to collect data, while monitoring the network performance and energy consumption, but also enables our proposed network redundancy diagnosis and energy profile calculations

    Energy-aware medium access control protocols for wireless sensors network applications

    Get PDF
    The main purpose of this thesis was to investigate energy efficient Medium Access Control (MAC) protocols designed to extend the lifetime of a wireless sensor network application, such as tracking, environment monitoring, home security, patient monitoring, e.g., foetal monitoring in the last weeks of pregnancy. From the perspective of communication protocols, energy efficiency is one of the most important issues, and can be addressed at each layer of the protocol stack; however, our research only focuses on the medium access control (MAC) layer. An energy efficient MAC protocol was designed based on modifications and optimisations for a synchronized power saving Sensor MAC (SMAC) protocol, which has three important components: periodic listen and sleep, collision and overhearing avoidance and message passing. The Sensor Block Acknowledgement (SBACK) MAC protocol is proposed, which combines contention-based, scheduling-based and block acknowledgement-based schemes to achieve energy efficiency. In SBACK, the use of ACK control packets is reduced since it will not have an ACK packet for every DATA packet sent; instead, one special packet called Block ACK Response will be used at the end of the transmission of all data packets. This packet informs the sender of how many packets were received by the receiver, reducing the number of ACK control packets we intended to reduce the power consumption for the nodes. Hence more useful data packets can be transmitted. A comparison study between SBACK and SMAC protocol is also performed. Considering 0% of packet losses, SBACK decreases the energy consumption when directly compared with S-MAC, we will have always a decrease of energy consumption. Three different transceivers will be used and considering a packet loss of 10% we will have a decrease of energy consumption between 10% and 0.1% depending on the transceiver. When there are no retransmissions of packets, SBACK only achieve worst performance when the number of fragments is less than 12, after that the decrease of average delay increases with the increase of the fragments sent. When 10% of the packets need retransmission only for the TR1000 transceiver worst results occurs in terms of energy waste, all other transceivers (CC2420 and AT86RF230) achieve better results. In terms of delay if we need to retransmit more than 10 packets the SBACK protocol always achieves better performance when comparing with the other MAC protocols that uses ACK

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore