101 research outputs found

    Nominal Unification of Higher Order Expressions with Recursive Let

    Get PDF
    A sound and complete algorithm for nominal unification of higher-order expressions with a recursive let is described, and shown to run in non-deterministic polynomial time. We also explore specializations like nominal letrec-matching for plain expressions and for DAGs and determine the complexity of corresponding unification problems.Comment: Pre-proceedings paper presented at the 26th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh, Scotland UK, 6-8 September 2016 (arXiv:1608.02534

    Symmetries in Modal Logics

    Full text link
    We generalize the notion of symmetries of propositional formulas in conjunctive normal form to modal formulas. Our framework uses the coinductive models and, hence, the results apply to a wide class of modal logics including, for example, hybrid logics. Our main result shows that the symmetries of a modal formula preserve entailment.Comment: In Proceedings LSFA 2012, arXiv:1303.713

    A Coinductive Approach to Proof Search

    Get PDF
    National audienceWe propose to study proof search from a coinductive point of view. In this paper, we consider intuitionistic logic and a focused system based on Herbelin's LJT for the implicational fragment. We introduce a variant of lambda calculus with potentially infinitely deep terms and a means of expressing alternatives for the description of the "solution spaces" (called Böhm forests), which are a representation of all (not necessarily well-founded but still locally well-formed) proofs of a given formula (more generally: of a given sequent). As main result we obtain, for each given formula, the reduction of a coinductive definition of the solution space to a effective coinductive description in a finitary term calculus with a formal greatest fixed-point operator. This reduction works in a quite direct manner for the case of Horn formulas. For the general case, the naive extension would not even be true. We need to study "co-contraction" of contexts (contraction bottom-up) for dealing with the varying contexts needed beyond the Horn fragment, and we point out the appropriate finitary calculus, where fixed-point variables are typed with sequents. Co-contraction enters the interpretation of the formal greatest fixed points - curiously in the semantic interpretation of fixed-point variables and not of the fixed-point operator

    Practical Subtyping for System F with Sized (Co-)Induction

    Full text link
    We present a rich type system with subtyping for an extension of System F. Our type constructors include sum and product types, universal and existential quantifiers, inductive and coinductive types. The latter two size annotations allowing the preservation of size invariants. For example it is possible to derive the termination of the quicksort by showing that partitioning a list does not increase its size. The system deals with complex programs involving mixed induction and coinduction, or even mixed (co-)induction and polymorphism (as for Scott-encoded datatypes). One of the key ideas is to completely separate the induction on sizes from the notion of recursive programs. We use the size change principle to check that the proof is well-founded, not that the program terminates. Termination is obtained by a strong normalization proof. Another key idea is the use symbolic witnesses to handle quantifiers of all sorts. To demonstrate the practicality of our system, we provide an implementation that accepts all the examples discussed in the paper and much more

    Représentation coinductive des graphes

    Get PDF
    Nous nous intéressons à la représentation de graphes dans le prouveur Coq. Nous avons choisi de les représenter par des types coinductifs dont nous voulions explorer l'utilisation. Ceux-ci permettent de rendre succincte et élégante la représentation et d'obtenir la navigabilité par construction. Nous avons dû contourner la condition de garde dont le but est d'assurer la validité des opérations effectuées sur les objets coinductifs. Son implantation dans Coq est restrictive et interdit parfois des définitions sémantiquement correctes. Une formalisation canonique des graphes dépasse ainsi l'expressivité directe de Coq. Nous avons donc proposé une solution respectant ces limitations, puis nous avons défini une relation sur les graphes nous permettant d'obtenir la même notion d'équivalence qu'avec une représentation classique tout en gardant les avantages de la coinduction. Nous montrons qu'elle est équivalente à une relation basée sur des observations finies.We are interested in graph representation in the theorem prover Coq. We have chosen to represent graphs using coinductive types. We wanted to explore their use in Coq. Indeed, they make the graph representation succinct and elegant. Moreover, navigability is ensured by construction. We had to overcome the guardedness condition whose objective is to ensure validity of all operations made on coinductive objects. Its implementation in Coq is restrictive and sometimes forbids definitions, even semantically correct ones. A canonical formalization of graphs thus surmounts Coq's direct expressivity. We have designed a solution respecting these limitations. Then, we have defined a relation on graphs close to the notion of equivalence obtained on a classical representation, keeping however the advantages offered by coinduction. We show that this relation is equivalent to another one based on finite observations of the graphs

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Sequentiality vs. Concurrency in Games and Logic

    Full text link
    Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.Comment: 35 pages, appeared in Mathematical Structures in Computer Scienc

    Non-Uniform Complexity via Non-Wellfounded Proofs

    Get PDF

    A Decidable Equivalence for a Turing-Complete, Distributed Model of Computation

    Get PDF
    Place/Transition Petri nets with inhibitor arcs (PTI nets for short), which are a well-known Turing-complete, distributed model of computation, are equipped with a decidable, behavioral equivalence, called pti-place bisimilarity, that conservatively extends place bisimilarity defined over Place/Transition nets (without inhibitor arcs). We prove that pti-place bisimilarity is sensible, as it respects the causal semantics of PTI nets
    • …
    corecore