555 research outputs found

    Permutation-invariant Feature Restructuring for Correlation-aware Image Set-based Recognition

    Full text link
    We consider the problem of comparing the similarity of image sets with variable-quantity, quality and un-ordered heterogeneous images. We use feature restructuring to exploit the correlations of both inner&\&inter-set images. Specifically, the residual self-attention can effectively restructure the features using the other features within a set to emphasize the discriminative images and eliminate the redundancy. Then, a sparse/collaborative learning-based dependency-guided representation scheme reconstructs the probe features conditional to the gallery features in order to adaptively align the two sets. This enables our framework to be compatible with both verification and open-set identification. We show that the parametric self-attention network and non-parametric dictionary learning can be trained end-to-end by a unified alternative optimization scheme, and that the full framework is permutation-invariant. In the numerical experiments we conducted, our method achieves top performance on competitive image set/video-based face recognition and person re-identification benchmarks.Comment: Accepted to ICCV 201

    AUTO3D: Novel view synthesis through unsupervisely learned variational viewpoint and global 3D representation

    Full text link
    This paper targets on learning-based novel view synthesis from a single or limited 2D images without the pose supervision. In the viewer-centered coordinates, we construct an end-to-end trainable conditional variational framework to disentangle the unsupervisely learned relative-pose/rotation and implicit global 3D representation (shape, texture and the origin of viewer-centered coordinates, etc.). The global appearance of the 3D object is given by several appearance-describing images taken from any number of viewpoints. Our spatial correlation module extracts a global 3D representation from the appearance-describing images in a permutation invariant manner. Our system can achieve implicitly 3D understanding without explicitly 3D reconstruction. With an unsupervisely learned viewer-centered relative-pose/rotation code, the decoder can hallucinate the novel view continuously by sampling the relative-pose in a prior distribution. In various applications, we demonstrate that our model can achieve comparable or even better results than pose/3D model-supervised learning-based novel view synthesis (NVS) methods with any number of input views.Comment: ECCV 202

    Tree Structure-Aware Few-Shot Image Classification via Hierarchical Aggregation

    Full text link
    In this paper, we mainly focus on the problem of how to learn additional feature representations for few-shot image classification through pretext tasks (e.g., rotation or color permutation and so on). This additional knowledge generated by pretext tasks can further improve the performance of few-shot learning (FSL) as it differs from human-annotated supervision (i.e., class labels of FSL tasks). To solve this problem, we present a plug-in Hierarchical Tree Structure-aware (HTS) method, which not only learns the relationship of FSL and pretext tasks, but more importantly, can adaptively select and aggregate feature representations generated by pretext tasks to maximize the performance of FSL tasks. A hierarchical tree constructing component and a gated selection aggregating component is introduced to construct the tree structure and find richer transferable knowledge that can rapidly adapt to novel classes with a few labeled images. Extensive experiments show that our HTS can significantly enhance multiple few-shot methods to achieve new state-of-the-art performance on four benchmark datasets. The code is available at: https://github.com/remiMZ/HTS-ECCV22.Comment: 22 pages, 9 figures and 4 tables Accepted by ECCV 202

    Cluster and Aggregate: Face Recognition with Large Probe Set

    Full text link
    Feature fusion plays a crucial role in unconstrained face recognition where inputs (probes) comprise of a set of NN low quality images whose individual qualities vary. Advances in attention and recurrent modules have led to feature fusion that can model the relationship among the images in the input set. However, attention mechanisms cannot scale to large NN due to their quadratic complexity and recurrent modules suffer from input order sensitivity. We propose a two-stage feature fusion paradigm, Cluster and Aggregate, that can both scale to large NN and maintain the ability to perform sequential inference with order invariance. Specifically, Cluster stage is a linear assignment of NN inputs to MM global cluster centers, and Aggregation stage is a fusion over MM clustered features. The clustered features play an integral role when the inputs are sequential as they can serve as a summarization of past features. By leveraging the order-invariance of incremental averaging operation, we design an update rule that achieves batch-order invariance, which guarantees that the contributions of early image in the sequence do not diminish as time steps increase. Experiments on IJB-B and IJB-S benchmark datasets show the superiority of the proposed two-stage paradigm in unconstrained face recognition. Code and pretrained models are available in https://github.com/mk-minchul/cafaceComment: To appear in NeurIPS 202

    CoNAN: Conditional Neural Aggregation Network For Unconstrained Face Feature Fusion

    Full text link
    Face recognition from image sets acquired under unregulated and uncontrolled settings, such as at large distances, low resolutions, varying viewpoints, illumination, pose, and atmospheric conditions, is challenging. Face feature aggregation, which involves aggregating a set of N feature representations present in a template into a single global representation, plays a pivotal role in such recognition systems. Existing works in traditional face feature aggregation either utilize metadata or high-dimensional intermediate feature representations to estimate feature quality for aggregation. However, generating high-quality metadata or style information is not feasible for extremely low-resolution faces captured in long-range and high altitude settings. To overcome these limitations, we propose a feature distribution conditioning approach called CoNAN for template aggregation. Specifically, our method aims to learn a context vector conditioned over the distribution information of the incoming feature set, which is utilized to weigh the features based on their estimated informativeness. The proposed method produces state-of-the-art results on long-range unconstrained face recognition datasets such as BTS, and DroneSURF, validating the advantages of such an aggregation strategy.Comment: Paper accepted at IJCB 202
    • …
    corecore