2,557 research outputs found

    Constructing Permutation Rational Functions From Isogenies

    Full text link
    A permutation rational function fFq(x)f\in \mathbb{F}_q(x) is a rational function that induces a bijection on Fq\mathbb{F}_q, that is, for all yFqy\in\mathbb{F}_q there exists exactly one xFqx\in\mathbb{F}_q such that f(x)=yf(x)=y. Permutation rational functions are intimately related to exceptional rational functions, and more generally exceptional covers of the projective line, of which they form the first important example. In this paper, we show how to efficiently generate many permutation rational functions over large finite fields using isogenies of elliptic curves, and discuss some cryptographic applications. Our algorithm is based on Fried's modular interpretation of certain dihedral exceptional covers of the projective line (Cont. Math., 1994)

    On the difference between permutation polynomials over finite fields

    Get PDF
    The well-known Chowla and Zassenhaus conjecture, proven by Cohen in 1990, states that if p>(d23d+4)2p>(d^2-3d+4)^2, then there is no complete mapping polynomial ff in \Fp[x] of degree d2d\ge 2. For arbitrary finite fields \Fq, a similar non-existence result is obtained recently by I\c s\i k, Topuzo\u glu and Winterhof in terms of the Carlitz rank of ff. Cohen, Mullen and Shiue generalized the Chowla-Zassenhaus-Cohen Theorem significantly in 1995, by considering differences of permutation polynomials. More precisely, they showed that if ff and f+gf+g are both permutation polynomials of degree d2d\ge 2 over \Fp, with p>(d23d+4)2p>(d^2-3d+4)^2, then the degree kk of gg satisfies k3d/5k \geq 3d/5, unless gg is constant. In this article, assuming ff and f+gf+g are permutation polynomials in \Fq[x], we give lower bounds for kk %=\mathrm{deg(h)} in terms of the Carlitz rank of ff and qq. Our results generalize the above mentioned result of I\c s\i k et al. We also show for a special class of polynomials ff of Carlitz rank n1n \geq 1 that if f+xkf+x^k is a permutation of \Fq, with gcd(k+1,q1)=1\gcd(k+1, q-1)=1, then k(qn)/(n+3)k\geq (q-n)/(n+3)
    corecore