947 research outputs found

    Good approximate quantum LDPC codes from spacetime circuit Hamiltonians

    Get PDF
    We study approximate quantum low-density parity-check (QLDPC) codes, which are approximate quantum error-correcting codes specified as the ground space of a frustration-free local Hamiltonian, whose terms do not necessarily commute. Such codes generalize stabilizer QLDPC codes, which are exact quantum error-correcting codes with sparse, low-weight stabilizer generators (i.e. each stabilizer generator acts on a few qubits, and each qubit participates in a few stabilizer generators). Our investigation is motivated by an important question in Hamiltonian complexity and quantum coding theory: do stabilizer QLDPC codes with constant rate, linear distance, and constant-weight stabilizers exist? We show that obtaining such optimal scaling of parameters (modulo polylogarithmic corrections) is possible if we go beyond stabilizer codes: we prove the existence of a family of [[N,k,d,ε]][[N,k,d,\varepsilon]] approximate QLDPC codes that encode k=Ω~(N)k = \widetilde{\Omega}(N) logical qubits into NN physical qubits with distance d=Ω~(N)d = \widetilde{\Omega}(N) and approximation infidelity ε=O(1/polylog(N))\varepsilon = \mathcal{O}(1/\textrm{polylog}(N)). The code space is stabilized by a set of 10-local noncommuting projectors, with each physical qubit only participating in O(polylogN)\mathcal{O}(\textrm{polylog} N) projectors. We prove the existence of an efficient encoding map, and we show that arbitrary Pauli errors can be locally detected by circuits of polylogarithmic depth. Finally, we show that the spectral gap of the code Hamiltonian is Ω~(N−3.09)\widetilde{\Omega}(N^{-3.09}) by analyzing a spacetime circuit-to-Hamiltonian construction for a bitonic sorting network architecture that is spatially local in polylog(N)\textrm{polylog}(N) dimensions.Comment: 51 pages, 13 figure

    Tensor and Matrix Inversions with Applications

    Full text link
    Higher order tensor inversion is possible for even order. We have shown that a tensor group endowed with the Einstein (contracted) product is isomorphic to the general linear group of degree nn. With the isomorphic group structures, we derived new tensor decompositions which we have shown to be related to the well-known canonical polyadic decomposition and multilinear SVD. Moreover, within this group structure framework, multilinear systems are derived, specifically, for solving high dimensional PDEs and large discrete quantum models. We also address multilinear systems which do not fit the framework in the least-squares sense, that is, when the tensor has an odd number of modes or when the tensor has distinct dimensions in each modes. With the notion of tensor inversion, multilinear systems are solvable. Numerically we solve multilinear systems using iterative techniques, namely biconjugate gradient and Jacobi methods in tensor format
    • …
    corecore