8,493 research outputs found

    Soft-decision decoding of permutation codes in AWGN and fading channels

    Get PDF
    A Dissertation submitted in ful llment of the requirements for the degree of Master of Science in the School of Electrical and Information Engineering January, 2017Permutation codes provide the required redundancy for error correction in a noisy communication channel. Combined with MFSK modulation, the outcome produces an e cient system reliable in combating background and impulse noise in the com- munication channel. Part of this can be associated with how the redundancy scales up the amount of frequencies used in transmission. Permutation coding has also shown to be a good candidate for error correction in harsh channels such as the Powerline Communication channel. Extensive work has been done to construct permutation code books but existing decoding algorithms become impractical for large codebook sizes. This is because the algorithms need to compare the received codeword with all the codewords in the codebook used in encoding. This research therefore designs an e cient soft-decision decoder of Permutation codes. The decoder's decision mechanism does not require lookup comparison with all the codewords in the codebook. The code construction technique that derives the codebook is also irrelevant to the decoder. Results compare the decoding algorithm with Hard-decision plus Envelope Detec- tion in the Additive White Gaussian Noise (AWGN) and Rayleigh Fading Channels. The results show that with lesser iterations, improved error correction performance is achieved for high-rate codes. Lower rate codes require additional iterations for signi cant error correction performance. The decoder also requires much less comup- tational complexity compared with existing decoding algorithms.MT201

    A New Method for Building Low-Density-Parity-Check Codes

    Get PDF
    This paper proposes a new method for building low-density-parity-check codes, exempt of cycle of length 4, based on a circulant permutation matrix, which needs very little memory for storage it in the encoder and a dual diagonal structure is applied to guarantee that parity check bits can be recursively computed with linear calculation complexity. The Bit Error Rate performance of the new low-density-parity-check codes was compared to the uncoded bi-phase-shift-keying over additive-white-gaussian-noise channel. This simulation shows that the proposed codes are very efficient over additive-white-gaussian-noise. The proposed codes ensure a very low encoding complexity and reduce the memory storage required for the parity-check matrix, which can be more easily built than others codes used in channel coding

    Design and Analysis of Nonbinary LDPC Codes for Arbitrary Discrete-Memoryless Channels

    Full text link
    We present an analysis, under iterative decoding, of coset LDPC codes over GF(q), designed for use over arbitrary discrete-memoryless channels (particularly nonbinary and asymmetric channels). We use a random-coset analysis to produce an effect that is similar to output-symmetry with binary channels. We show that the random selection of the nonzero elements of the GF(q) parity-check matrix induces a permutation-invariance property on the densities of the decoder messages, which simplifies their analysis and approximation. We generalize several properties, including symmetry and stability from the analysis of binary LDPC codes. We show that under a Gaussian approximation, the entire q-1 dimensional distribution of the vector messages is described by a single scalar parameter (like the distributions of binary LDPC messages). We apply this property to develop EXIT charts for our codes. We use appropriately designed signal constellations to obtain substantial shaping gains. Simulation results indicate that our codes outperform multilevel codes at short block lengths. We also present simulation results for the AWGN channel, including results within 0.56 dB of the unconstrained Shannon limit (i.e. not restricted to any signal constellation) at a spectral efficiency of 6 bits/s/Hz.Comment: To appear, IEEE Transactions on Information Theory, (submitted October 2004, revised and accepted for publication, November 2005). The material in this paper was presented in part at the 41st Allerton Conference on Communications, Control and Computing, October 2003 and at the 2005 IEEE International Symposium on Information Theor

    Enhanced Recursive Reed-Muller Erasure Decoding

    Get PDF
    Recent work have shown that Reed-Muller (RM) codes achieve the erasure channel capacity. However, this performance is obtained with maximum-likelihood decoding which can be costly for practical applications. In this paper, we propose an encoding/decoding scheme for Reed-Muller codes on the packet erasure channel based on Plotkin construction. We present several improvements over the generic decoding. They allow, for a light cost, to compete with maximum-likelihood decoding performance, especially on high-rate codes, while significantly outperforming it in terms of speed

    Iterative Algebraic Soft-Decision List Decoding of Reed-Solomon Codes

    Get PDF
    In this paper, we present an iterative soft-decision decoding algorithm for Reed-Solomon codes offering both complexity and performance advantages over previously known decoding algorithms. Our algorithm is a list decoding algorithm which combines two powerful soft decision decoding techniques which were previously regarded in the literature as competitive, namely, the Koetter-Vardy algebraic soft-decision decoding algorithm and belief-propagation based on adaptive parity check matrices, recently proposed by Jiang and Narayanan. Building on the Jiang-Narayanan algorithm, we present a belief-propagation based algorithm with a significant reduction in computational complexity. We introduce the concept of using a belief-propagation based decoder to enhance the soft-input information prior to decoding with an algebraic soft-decision decoder. Our algorithm can also be viewed as an interpolation multiplicity assignment scheme for algebraic soft-decision decoding of Reed-Solomon codes.Comment: Submitted to IEEE for publication in Jan 200
    • …
    corecore