20 research outputs found

    Exchangeable pairs, switchings, and random regular graphs

    Full text link
    We consider the distribution of cycle counts in a random regular graph, which is closely linked to the graph's spectral properties. We broaden the asymptotic regime in which the cycle counts are known to be approximately Poisson, and we give an explicit bound in total variation distance for the approximation. Using this result, we calculate limiting distributions of linear eigenvalue functionals for random regular graphs. Previous results on the distribution of cycle counts by McKay, Wormald, and Wysocka (2004) used the method of switchings, a combinatorial technique for asymptotic enumeration. Our proof uses Stein's method of exchangeable pairs and demonstrates an interesting connection between the two techniques.Comment: Very minor changes; 23 page

    Rainbow Hamilton cycles in random regular graphs

    Full text link
    A rainbow subgraph of an edge-coloured graph has all edges of distinct colours. A random d-regular graph with d even, and having edges coloured randomly with d/2 of each of n colours, has a rainbow Hamilton cycle with probability tending to 1 as n tends to infinity, provided d is at least 8.Comment: 16 page

    Functional limit theorems for random regular graphs

    Full text link
    Consider d uniformly random permutation matrices on n labels. Consider the sum of these matrices along with their transposes. The total can be interpreted as the adjacency matrix of a random regular graph of degree 2d on n vertices. We consider limit theorems for various combinatorial and analytical properties of this graph (or the matrix) as n grows to infinity, either when d is kept fixed or grows slowly with n. In a suitable weak convergence framework, we prove that the (finite but growing in length) sequences of the number of short cycles and of cyclically non-backtracking walks converge to distributional limits. We estimate the total variation distance from the limit using Stein's method. As an application of these results we derive limits of linear functionals of the eigenvalues of the adjacency matrix. A key step in this latter derivation is an extension of the Kahn-Szemer\'edi argument for estimating the second largest eigenvalue for all values of d and n.Comment: Added Remark 27. 39 pages. To appear in Probability Theory and Related Field

    Local resilience and Hamiltonicity Maker-Breaker games in random-regular graphs

    Full text link
    For an increasing monotone graph property \mP the \emph{local resilience} of a graph GG with respect to \mP is the minimal rr for which there exists of a subgraph HGH\subseteq G with all degrees at most rr such that the removal of the edges of HH from GG creates a graph that does not possesses \mP. This notion, which was implicitly studied for some ad-hoc properties, was recently treated in a more systematic way in a paper by Sudakov and Vu. Most research conducted with respect to this distance notion focused on the Binomial random graph model \GNP and some families of pseudo-random graphs with respect to several graph properties such as containing a perfect matching and being Hamiltonian, to name a few. In this paper we continue to explore the local resilience notion, but turn our attention to random and pseudo-random \emph{regular} graphs of constant degree. We investigate the local resilience of the typical random dd-regular graph with respect to edge and vertex connectivity, containing a perfect matching, and being Hamiltonian. In particular we prove that for every positive ϵ\epsilon and large enough values of dd with high probability the local resilience of the random dd-regular graph, \GND, with respect to being Hamiltonian is at least (1ϵ)d/6(1-\epsilon)d/6. We also prove that for the Binomial random graph model \GNP, for every positive ϵ>0\epsilon>0 and large enough values of KK, if p>Klnnnp>\frac{K\ln n}{n} then with high probability the local resilience of \GNP with respect to being Hamiltonian is at least (1ϵ)np/6(1-\epsilon)np/6. Finally, we apply similar techniques to Positional Games and prove that if dd is large enough then with high probability a typical random dd-regular graph GG is such that in the unbiased Maker-Breaker game played on the edges of GG, Maker has a winning strategy to create a Hamilton cycle.Comment: 34 pages. 1 figur
    corecore