35 research outputs found

    Modelling Mixed Discrete-Continuous Domains for Planning

    Full text link
    In this paper we present pddl+, a planning domain description language for modelling mixed discrete-continuous planning domains. We describe the syntax and modelling style of pddl+, showing that the language makes convenient the modelling of complex time-dependent effects. We provide a formal semantics for pddl+ by mapping planning instances into constructs of hybrid automata. Using the syntax of HAs as our semantic model we construct a semantic mapping to labelled transition systems to complete the formal interpretation of pddl+ planning instances. An advantage of building a mapping from pddl+ to HA theory is that it forms a bridge between the Planning and Real Time Systems research communities. One consequence is that we can expect to make use of some of the theoretical properties of HAs. For example, for a restricted class of HAs the Reachability problem (which is equivalent to Plan Existence) is decidable. pddl+ provides an alternative to the continuous durative action model of pddl2.1, adding a more flexible and robust model of time-dependent behaviour

    ICAPS 2012. Proceedings of the third Workshop on the International Planning Competition

    Get PDF
    22nd International Conference on Automated Planning and Scheduling. June 25-29, 2012, Atibaia, Sao Paulo (Brazil). Proceedings of the 3rd the International Planning CompetitionThe Academic Advising Planning Domain / Joshua T. Guerin, Josiah P. Hanna, Libby Ferland, Nicholas Mattei, and Judy Goldsmith. -- Leveraging Classical Planners through Translations / Ronen I. Brafman, Guy Shani, and Ran Taig. -- Advances in BDD Search: Filtering, Partitioning, and Bidirectionally Blind / Stefan Edelkamp, Peter Kissmann, and Álvaro Torralba. -- A Multi-Agent Extension of PDDL3.1 / Daniel L. Kovacs. -- Mining IPC-2011 Results / Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández. -- How Good is the Performance of the Best Portfolio in IPC-2011? / Sergio Nuñez, Daniel Borrajo, and Carlos Linares López. -- “Type Problem in Domain Description!” or, Outsiders’ Suggestions for PDDL Improvement / Robert P. Goldman and Peter KellerEn prens

    Scalability of RAID systems

    Get PDF
    RAID systems (Redundant Arrays of Inexpensive Disks) have dominated backend storage systems for more than two decades and have grown continuously in size and complexity. Currently they face unprecedented challenges from data intensive applications such as image processing, transaction processing and data warehousing. As the size of RAID systems increases, designers are faced with both performance and reliability challenges. These challenges include limited back-end network bandwidth, physical interconnect failures, correlated disk failures and long disk reconstruction time. This thesis studies the scalability of RAID systems in terms of both performance and reliability through simulation, using a discrete event driven simulator for RAID systems (SIMRAID) developed as part of this project. SIMRAID incorporates two benchmark workload generators, based on the SPC-1 and Iometer benchmark specifications. Each component of SIMRAID is highly parameterised, enabling it to explore a large design space. To improve the simulation speed, SIMRAID develops a set of abstraction techniques to extract the behaviour of the interconnection protocol without losing accuracy. Finally, to meet the technology trend toward heterogeneous storage architectures, SIMRAID develops a framework that allows easy modelling of different types of device and interconnection technique. Simulation experiments were first carried out on performance aspects of scalability. They were designed to answer two questions: (1) given a number of disks, which factors affect back-end network bandwidth requirements; (2) given an interconnection network, how many disks can be connected to the system. The results show that the bandwidth requirement per disk is primarily determined by workload features and stripe unit size (a smaller stripe unit size has better scalability than a larger one), with cache size and RAID algorithm having very little effect on this value. The maximum number of disks is limited, as would be expected, by the back-end network bandwidth. Studies of reliability have led to three proposals to improve the reliability and scalability of RAID systems. Firstly, a novel data layout called PCDSDF is proposed. PCDSDF combines the advantages of orthogonal data layouts and parity declustering data layouts, so that it can not only survivemultiple disk failures caused by physical interconnect failures or correlated disk failures, but also has a good degraded and rebuild performance. The generating process of PCDSDF is deterministic and time-efficient. The number of stripes per rotation (namely the number of stripes to achieve rebuild workload balance) is small. Analysis shows that the PCDSDF data layout can significantly improve the system reliability. Simulations performed on SIMRAID confirm the good performance of PCDSDF, which is comparable to other parity declustering data layouts, such as RELPR. Secondly, a system architecture and rebuilding mechanism have been designed, aimed at fast disk reconstruction. This architecture is based on parity declustering data layouts and a disk-oriented reconstruction algorithm. It uses stripe groups instead of stripes as the basic distribution unit so that it can make use of the sequential nature of the rebuilding workload. The design space of system factors such as parity declustering ratio, chunk size, private buffer size of surviving disks and free buffer size are explored to provide guidelines for storage system design. Thirdly, an efficient distributed hot spare allocation and assignment algorithm for general parity declustering data layouts has been developed. This algorithm avoids conflict problems in the process of assigning distributed spare space for the units on the failed disk. Simulation results show that it effectively solves the write bottleneck problem and, at the same time, there is only a small increase in the average response time to user requests

    Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals

    Full text link
    Tesis por compendioDespite the continuous evolution in computers and information technology, real-world combinatorial optimization problems are NP-problems, in particular in the domain of planning and scheduling. Thus, although exact techniques from the Operations Research (OR) field, such as Linear Programming, could be applied to solve optimization problems, they are difficult to apply in real-world scenarios since they usually require too much computational time, i.e: an optimized solution is required at an affordable computational time. Furthermore, decision makers often face different and typically opposing goals, then resulting multi-objective optimization problems. Therefore, approximate techniques from the Artificial Intelligence (AI) field are commonly used to solve the real world problems. The AI techniques provide richer and more flexible representations of real-world (Gomes 2000), and they are widely used to solve these type of problems. AI heuristic techniques do not guarantee the optimal solution, but they provide near-optimal solutions in a reasonable time. These techniques are divided into two broad classes of algorithms: constructive and local search methods (Aarts and Lenstra 2003). They can guide their search processes by means of heuristics or metaheuristics depending on how they escape from local optima (Blum and Roli 2003). Regarding multi-objective optimization problems, the use of AI techniques becomes paramount due to their complexity (Coello Coello 2006). Nowadays, the point of view for planning and scheduling tasks has changed. Due to the fact that real world is uncertain, imprecise and non-deterministic, there might be unknown information, breakdowns, incidences or changes, which become the initial plans or schedules invalid. Thus, there is a new trend to cope these aspects in the optimization techniques, and to seek robust solutions (schedules) (Lambrechts, Demeulemeester, and Herroelen 2008). In this way, these optimization problems become harder since a new objective function (robustness measure) must be taken into account during the solution search. Therefore, the robustness concept is being studied and a general robustness measure has been developed for any scheduling problem (such as Job Shop Problem, Open Shop Problem, Railway Scheduling or Vehicle Routing Problem). To this end, in this thesis, some techniques have been developed to improve the search of optimized and robust solutions in planning and scheduling problems. These techniques offer assistance to decision makers to help in planning and scheduling tasks, determine the consequences of changes, provide support in the resolution of incidents, provide alternative plans, etc. As a case study to evaluate the behaviour of the techniques developed, this thesis focuses on problems related to container terminals. Container terminals generally serve as a transshipment zone between ships and land vehicles (trains or trucks). In (Henesey 2006a), it is shown how this transshipment market has grown rapidly. Container terminals are open systems with three distinguishable areas: the berth area, the storage yard, and the terminal receipt and delivery gate area. Each one presents different planning and scheduling problems to be optimized (Stahlbock and Voß 2008). For example, berth allocation, quay crane assignment, stowage planning, and quay crane scheduling must be managed in the berthing area; the container stacking problem, yard crane scheduling, and horizontal transport operations must be carried out in the yard area; and the hinterland operations must be solved in the landside area. Furthermore, dynamism is also present in container terminals. The tasks of the container terminals take place in an environment susceptible of breakdowns or incidences. For instance, a Quay Crane engine stopped working and needs to be revised, delaying this task one or two hours. Thereby, the robustness concept can be included in the scheduling techniques to take into consideration some incidences and return a set of robust schedules. In this thesis, we have developed a new domain-dependent planner to obtain more effi- cient solutions in the generic problem of reshuffles of containers. Planning heuristics and optimization criteria developed have been evaluated on realistic problems and they are applicable to the general problem of reshuffling in blocks world scenarios. Additionally, we have developed a scheduling model, using constructive metaheuristic techniques on a complex problem that combines sequences of scenarios with different types of resources (Berth Allocation, Quay Crane Assignment, and Container Stacking problems). These problems are usually solved separately and their integration allows more optimized solutions. Moreover, in order to address the impact and changes that arise in dynamic real-world environments, a robustness model has been developed for scheduling tasks. This model has been applied to metaheuristic schemes, which are based on genetic algorithms. The extension of such schemes, incorporating the robustness model developed, allows us to evaluate and obtain more robust solutions. This approach, combined with the classical optimality criterion in scheduling problems, allows us to obtain, in an efficient in way, optimized solution able to withstand a greater degree of incidents that occur in dynamic scenarios. Thus, a proactive approach is applied to the problem that arises with the presence of incidences and changes that occur in typical scheduling problems of a dynamic real world.Rodríguez Molins, M. (2015). Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48545TESISCompendi

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Action Graphs for Performing Goal Recognition Design on Human-Inhabited Environments

    Get PDF
    Goal recognition is an important component of many context-aware and smart environment services; however, a person’s goal often cannot be determined until their plan nears completion. Therefore, by modifying the state of the environment, our work aims to reduce the number of observations required to recognise a human’s goal. These modifications result in either: Actions in the available plans being replaced with more distinctive actions; or removing the possibility of performing some actions, so humans are forced to take an alternative (more distinctive) plan. In our solution, a symbolic representation of actions and the world state is transformed into an Action Graph, which is then traversed to discover the non-distinctive plan prefixes. These prefixes are processed to determine which actions should be replaced or removed. For action replacement, we developed an exhaustive approach and an approach that shrinks the plans then reduces the non-distinctive plan prefixes, namely Shrink–Reduce. Exhaustive is guaranteed to find the minimal distinctiveness but is more computationally expensive than Shrink–Reduce. These approaches are compared using a test domain with varying amounts of goals, variables and values, and a realistic kitchen domain. Our action removal method is shown to increase the distinctiveness of various grid-based navigation problems, with a width/height ranging from 4 to 16 and between 2 and 14 randomly selected goals, by an average of 3.27 actions in an average time of 4.69 s, whereas a state-of-the-art approach often breaches a 10 min time limit

    Activity, context, and plan recognition with computational causal behavior models

    Get PDF
    Objective of this thesis is to answer the question "how to achieve efficient sensor-based reconstruction of causal structures of human behaviour in order to provide assistance?". To answer this question, the concept of Computational Causal Behaviour Models (CCBMs) is introduced. CCBM allows the specification of human behaviour by means of preconditions and effects and employs Bayesian filtering techniques to reconstruct action sequences from noisy and ambiguous sensor data. Furthermore, a novel approximative inference algorithm – the Marginal Filter – is introduced

    High-resolution 7-Tesla fMRI data on the perception of musical genres – an extension to the studyforrest dataset

    Get PDF
    Here we present an extension to the studyforrest dataset – a versatile resource for studying the behavior of the human brain in situations of real-life complexity (http://studyforrest.org). This release adds more high-resolution, ultra high-field (7 Tesla) functional magnetic resonance imaging (fMRI) data from the same individuals. The twenty participants were repeatedly stimulated with a total of 25 music clips, with and without speech content, from five different genres using a slow event-related paradigm. The data release includes raw fMRI data, as well as precomputed structural alignments for within-subject and group analysis. In addition to fMRI, simultaneously recorded cardiac and respiratory traces, as well the complete implementation of the stimulation paradigm, including stimuli, are provided. An initial quality control analysis reveals distinguishable patterns of response to individual genres throughout a large expanse of areas known to be involved in auditory and speech processing. The present data can be used to, for example, generate encoding models for music perception that can be validated against the previously released fMRI data from stimulation with the “Forrest Gump” audio-movie and its rich musical content. In order to facilitate replicative and derived works, only free and open-source software was utilized

    Learning Static Knowledge for AI Planning Domain Models via Plan Traces

    Get PDF
    Learning is fundamental to autonomous behaviour and from the point of view of Machine Learning, it is the ability of computers to learn without being programmed explicitly. Attaining such capability for learning domain models for Automated Planning (AP) engines is what triggered research into developing automated domain-learning systems. These systems can learn from training data. Until recent research it was believed that working in dynamically changing and unpredictable environments, it was not possible to construct action models a priori. After the research in the last decade, many systems have proved effective in engineering domain models by learning from plan traces. However, these systems require additional planner oriented information such as a partial domain model, initial, goal and/or intermediate states. Hence, a question arises - whether or not we can learn a dynamic domain model, which covers all domain behaviours from real-time action sequence traces only. The research in this thesis extends an area of the most promising line of work that is connected to work presented in an REF Journal paper. This research aims to enhance the LOCM system and to extend the method of Learning Domain Models for AI Planning Engines via Plan Traces. This method was first published in ICAPS 2009 by Cresswell, McCluskey, and West (Cresswell, 2009). LOCM is unique in that it requires no prior knowledge of the target domain; however, it can produce a dynamic part of a domain model from training. Its main drawback is that it does not produce static knowledge of the domain, and its model lacks certain expressive features. A key aspect of research presented in this thesis is to enhance the technique with the capacity to generate static knowledge. A test and focus for this PhD is to make LOCM able to learn static relationships in a fully automatic way in addition to the dynamic relationships, which LOCM can already learn, using plan traces as input. We present a novel system - The ASCoL (Automatic Static Constraints Learner) which provides a graphical interface for visual representation and exploits directed graph discovery and analysis technique. It has been designed to discover domain-specific static relations/constraints automatically in order to enhance planning domain models. The ASCoL method has wider applications. Combined with LOCM, ASCoL can be a useful tool to produce benchmark domains for automated planning engines. It is also useful as a debugging tool for improving existing domain models. We have evaluated ASCoL on fifteen different IPC domains and on different types of goal-oriented and random-walk plans as input training data and it has been shown to be effective
    corecore