264 research outputs found

    Permutation Decoding and the Stopping Redundancy Hierarchy of Cyclic and Extended Cyclic Codes

    Full text link
    We introduce the notion of the stopping redundancy hierarchy of a linear block code as a measure of the trade-off between performance and complexity of iterative decoding for the binary erasure channel. We derive lower and upper bounds for the stopping redundancy hierarchy via Lovasz's Local Lemma and Bonferroni-type inequalities, and specialize them for codes with cyclic parity-check matrices. Based on the observed properties of parity-check matrices with good stopping redundancy characteristics, we develop a novel decoding technique, termed automorphism group decoding, that combines iterative message passing and permutation decoding. We also present bounds on the smallest number of permutations of an automorphism group decoder needed to correct any set of erasures up to a prescribed size. Simulation results demonstrate that for a large number of algebraic codes, the performance of the new decoding method is close to that of maximum likelihood decoding.Comment: 40 pages, 6 figures, 10 tables, submitted to IEEE Transactions on Information Theor

    Distance Properties of Short LDPC Codes and their Impact on the BP, ML and Near-ML Decoding Performance

    Full text link
    Parameters of LDPC codes, such as minimum distance, stopping distance, stopping redundancy, girth of the Tanner graph, and their influence on the frame error rate performance of the BP, ML and near-ML decoding over a BEC and an AWGN channel are studied. Both random and structured LDPC codes are considered. In particular, the BP decoding is applied to the code parity-check matrices with an increasing number of redundant rows, and the convergence of the performance to that of the ML decoding is analyzed. A comparison of the simulated BP, ML, and near-ML performance with the improved theoretical bounds on the error probability based on the exact weight spectrum coefficients and the exact stopping size spectrum coefficients is presented. It is observed that decoding performance very close to the ML decoding performance can be achieved with a relatively small number of redundant rows for some codes, for both the BEC and the AWGN channels

    Refined Upper Bounds on Stopping Redundancy of Binary Linear Codes

    Full text link
    The ll-th stopping redundancy ฯl(C)\rho_l(\mathcal C) of the binary [n,k,d][n, k, d] code C\mathcal C, 1โ‰คlโ‰คd1 \le l \le d, is defined as the minimum number of rows in the parity-check matrix of C\mathcal C, such that the smallest stopping set is of size at least ll. The stopping redundancy ฯ(C)\rho(\mathcal C) is defined as ฯd(C)\rho_d(\mathcal C). In this work, we improve on the probabilistic analysis of stopping redundancy, proposed by Han, Siegel and Vardy, which yields the best bounds known today. In our approach, we judiciously select the first few rows in the parity-check matrix, and then continue with the probabilistic method. By using similar techniques, we improve also on the best known bounds on ฯl(C)\rho_l(\mathcal C), for 1โ‰คlโ‰คd1 \le l \le d. Our approach is compared to the existing methods by numerical computations.Comment: 5 pages; ITW 201

    Enhanced Recursive Reed-Muller Erasure Decoding

    Get PDF
    Recent work have shown that Reed-Muller (RM) codes achieve the erasure channel capacity. However, this performance is obtained with maximum-likelihood decoding which can be costly for practical applications. In this paper, we propose an encoding/decoding scheme for Reed-Muller codes on the packet erasure channel based on Plotkin construction. We present several improvements over the generic decoding. They allow, for a light cost, to compete with maximum-likelihood decoding performance, especially on high-rate codes, while significantly outperforming it in terms of speed

    Optimization of Parity-Check Matrices of LDPC Codes

    Get PDF
    Madala tihedusega paarsuskontroll (LDPC) on laialdaselt kasutusel kommunikatsioonis tรคnu oma suurepรคrasele praktilisele vรตimekusele. LDPC koodi vigade tรตenรคosust iteratiivse dekodeerimise puhul binaarsel kustutuskanalil mรครคrab klass kombinatoorseid objekte, nimega peatamise rรผhm. Vรคikese suurusega peatamise rรผhmad on dekodeerija vigade pรตhjuseks. Peatamise liiasust mรครคratletakse kui minimaalset ridade arvu paarsuskontrolli koodi maatriksis, mille puhul pole selles vรคikesi peatuse rรผhmi. Han, Siegel ja Vardy kasutavad รผld binaarse lineaarkoodi รผlemise piiri peatamiste liiasuse tuletamiseks tรตenรคosuslikku analรผรผsi. Need piirid on teadaolevalt parimad paljude koodi perekondade puhul. Selles tรถรถs me parendame Hani, Siegeli ja Vardy tulemusi modifitseerides selleks nende analรผรผsi. Meie lรคhenemine erineb sellepoolest, et me valime mรตistlikult esimese ja teise rea paarsuskontrolli maatriksis ja siis lรคheme edasi tรตenรคosusliku analรผรผsiga. Numbrilised vรครคrtused kinnitavad seda, et piirid mis on mรครคratletud selles tรถรถs on paremad Hani, Siegeli ja Vardy omadest kahe koodi puhul: laiendatud Golay koodis ja kvadraatses jรครคk koodis pikkusega 48.Low-density parity-check (LDPC) codes are widely used in communications due to their excellent practical performance. Error probability of LDPC code under iterative decoding on the binary erasure channel is determined by a class of combinatorial objects, called stopping sets. Stopping sets of small size are the reason for the decoder failures. Stopping redundancy is defined as the minimum number of rows in a parity-check matrix of the code, such that there are no small stopping sets in it. Han, Siegel and Vardy derive upper bounds on the stopping redundancy of general binary linear codes by using probabilistic analysis. For many families of codes, these bounds are the best currently known. In this work, we improve on the results of Han, Siegel and Vardy by modifying their analysis. Our approach is different in that we judiciously select the first and the second rows in the parity-check matrix, and then proceed with the probabilistic analysis. Numerical experiments confirm that the bounds obtained in this thesis are superior to those of Han, Siegel and Vardy for two codes: the extended Golay code and the quadratic residue code of length 48

    Stopping Sets of Algebraic Geometry Codes

    Get PDF
    Abstract โ€” Stopping sets and stopping set distribution of a linear code play an important role in the performance analysis of iterative decoding for this linear code. Let C be an [n, k] linear code over Fq with parity-check matrix H, wheretherowsof H may be dependent. Let [n] ={1, 2,...,n} denote the set of column indices of H. Astopping set S of C with parity-check matrix H is a subset of [n] such that the restriction of H to S does not contain a row of weight 1. The stopping set distribution {Ti (H)} n i=0 enumerates the number of stopping sets with size i of C with parity-check matrix H. Denote H โˆ— , the paritycheck matrix, consisting of all the nonzero codewords in the dual code C โŠฅ. In this paper, we study stopping sets and stopping set distributions of some residue algebraic geometry (AG) codes with parity-check matrix H โˆ—. First, we give two descriptions of stopping sets of residue AG codes. For the simplest AG codes, i.e., the generalized Reedโ€“Solomon codes, it is easy to determine all the stopping sets. Then, we consider the AG codes from elliptic curves. We use the group structure of rational points of elliptic curves to present a complete characterization of stopping sets. Then, the stopping sets, the stopping set distribution, and the stopping distance of the AG code from an elliptic curve are reduced to the search, counting, and decision versions of the subset sum problem in the group of rational points of the elliptic curve, respectively. Finally, for some special cases, we determine the stopping set distributions of the AG codes from elliptic curves. Index Terms โ€” Algebraic geometry codes, elliptic curves, stopping distance, stopping sets, stopping set distribution, subset sum problem. I

    Stopping Set Distributions of Some Linear Codes

    Full text link
    Stopping sets and stopping set distribution of an low-density parity-check code are used to determine the performance of this code under iterative decoding over a binary erasure channel (BEC). Let CC be a binary [n,k][n,k] linear code with parity-check matrix HH, where the rows of HH may be dependent. A stopping set SS of CC with parity-check matrix HH is a subset of column indices of HH such that the restriction of HH to SS does not contain a row of weight one. The stopping set distribution {Ti(H)}i=0n\{T_i(H)\}_{i=0}^n enumerates the number of stopping sets with size ii of CC with parity-check matrix HH. Note that stopping sets and stopping set distribution are related to the parity-check matrix HH of CC. Let Hโˆ—H^{*} be the parity-check matrix of CC which is formed by all the non-zero codewords of its dual code CโŠฅC^{\perp}. A parity-check matrix HH is called BEC-optimal if Ti(H)=Ti(Hโˆ—),i=0,1,...,nT_i(H)=T_i(H^*), i=0,1,..., n and HH has the smallest number of rows. On the BEC, iterative decoder of CC with BEC-optimal parity-check matrix is an optimal decoder with much lower decoding complexity than the exhaustive decoder. In this paper, we study stopping sets, stopping set distributions and BEC-optimal parity-check matrices of binary linear codes. Using finite geometry in combinatorics, we obtain BEC-optimal parity-check matrices and then determine the stopping set distributions for the Simplex codes, the Hamming codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201

    ์ƒˆ๋กœ์šด ์†Œ์‹ค ์ฑ„๋„์„ ์œ„ํ•œ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ ๋ฐ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ๋ฐ ์ผ๋ฐ˜ํ™”๋œ ๊ทผ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„ LDPC ๋ถ€ํ˜ธ์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๋…ธ์ข…์„ .In this dissertation, three main contributions are given asi) new two-stage automorphism group decoders (AGD) for cyclic codes in the erasure channel, ii) new constructions of binary and ternary locally repairable codes (LRCs) using cyclic codes and existing LRCs, and iii) new constructions of high-rate generalized root protograph (GRP) low-density parity-check (LDPC) codes for a nonergodic block interference and partially regular (PR) LDPC codes for follower noise jamming (FNJ), are considered. First, I propose a new two-stage AGD (TS-AGD) for cyclic codes in the erasure channel. Recently, error correcting codes in the erasure channel have drawn great attention for various applications such as distributed storage systems and wireless sensor networks, but many of their decoding algorithms are not practical because they have higher decoding complexity and longer delay. Thus, the AGD for cyclic codes in the erasure channel was introduced, which has good erasure decoding performance with low decoding complexity. In this research, I propose new TS-AGDs for cyclic codes in the erasure channel by modifying the parity check matrix and introducing the preprocessing stage to the AGD scheme. The proposed TS-AGD is analyzed for the perfect codes, BCH codes, and maximum distance separable (MDS) codes. Through numerical analysis, it is shown that the proposed decoding algorithm has good erasure decoding performance with lower decoding complexity than the conventional AGD. For some cyclic codes, it is shown that the proposed TS-AGD achieves the perfect decoding in the erasure channel, that is, the same decoding performance as the maximum likelihood (ML) decoder. For MDS codes, TS-AGDs with the expanded parity check matrix and the submatrix inversion are also proposed and analyzed. Second, I propose new constructions of binary and ternary LRCs using cyclic codes and existing two LRCs for distributed storage system. For a primitive work, new constructions of binary and ternary LRCs using cyclic codes and their concatenation are proposed. Some of proposed binary LRCs with Hamming weights 4, 5, and 6 are optimal in terms of the upper bounds. In addition, the similar method of the binary case is applied to construct the ternary LRCs with good parameters. Also, new constructions of binary LRCs with large Hamming distance and disjoint repair groups are proposed. The proposed binary linear LRCs constructed by using existing binary LRCs are optimal or near-optimal in terms of the bound with disjoint repair group. Last, I propose new constructions of high-rate GRP LDPC codes for a nonergodic block interference and anti-jamming PR LDPC codes for follower jamming. The proposed high-rate GRP LDPC codes are based on nonergodic two-state binary symmetric channel with block interference and Nakagami-mm block fading. In these channel environments, GRP LDPC codes have good performance approaching to the theoretical limit in the channel with one block interference, where their performance is shown by the channel threshold or the channel outage probability. In the proposed design, I find base matrices using the protograph extrinsic information transfer (PEXIT) algorithm. Also, the proposed new constructions of anti-jamming partially regular LDPC codes is based on follower jamming on the frequency-hopped spread spectrum (FHSS). For a channel environment, I suppose follower jamming with random dwell time and Rayleigh block fading environment with M-ary frequnecy shift keying (MFSK) modulation. For a coding perspective, an anti-jamming LDPC codes against follower jamming are introduced. In order to optimize the jamming environment, the partially regular structure and corresponding density evolution schemes are used. A series of simulations show that the proposed codes outperforms the 802.16e standard in the presence of follower noise jamming.์ด ๋…ผ๋ฌธ์—์„œ๋Š”, i) ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ˆœํ™˜ ๋ถ€ํ˜ธ์˜ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ , ii) ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ(LRC)๋ฅผ ์ด์šฉํ•œ ์ด์ง„ ํ˜น์€ ์‚ผ์ง„ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ์„ค๊ณ„๋ฒ•, ๋ฐ iii) ๋ธ”๋ก ๊ฐ„์„ญ ํ™˜๊ฒฝ์„ ์œ„ํ•œ ๊ณ ๋ถ€ํšจ์œจ์˜ ์ผ๋ฐ˜ํ™”๋œ ๊ทผ ํ”„๋กœํ† ๊ทธ๋ž˜ํ”„(generalized root protograph, GRP) LDPC ๋ถ€ํ˜ธ ๋ฐ ์ถ”์  ์žฌ๋ฐ ํ™˜๊ฒฝ์„ ์œ„ํ•œ ํ•ญ์žฌ๋ฐ ๋ถ€๋ถ„ ๊ท ์ผ (anti-jamming paritally regular, AJ-PR) LDPC ๋ถ€ํ˜ธ๊ฐ€ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ˆœํ™˜ ๋ถ€ํ˜ธ์˜ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ตœ๊ทผ ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ ํ˜น์€ ๋ฌด์„  ์„ผ์„œ ๋„คํŠธ์›Œํฌ ๋“ฑ์˜ ์‘์šฉ์œผ๋กœ ์ธํ•ด ์†Œ์‹ค ์ฑ„๋„์—์„œ์˜ ์˜ค๋ฅ˜ ์ •์ • ๋ถ€ํ˜ธ ๊ธฐ๋ฒ•์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ๋ณตํ˜ธ๊ธฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋†’์€ ๋ณตํ˜ธ ๋ณต์žก๋„ ๋ฐ ๊ธด ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ์‹ค์šฉ์ ์ด์ง€ ๋ชปํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋‚ฎ์€ ๋ณตํ˜ธ ๋ณต์žก๋„ ๋ฐ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ผ ์ˆ˜ ์žˆ๋Š” ์ˆœํ™˜ ๋ถ€ํ˜ธ์—์„œ ์ด๋‹จ ์ž๊ธฐ ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํŒจ๋ฆฌํ‹ฐ ๊ฒ€์‚ฌ ํ–‰๋ ฌ์„ ๋ณ€ํ˜•ํ•˜๊ณ , ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์„ ๋„์ž…ํ•œ ์ƒˆ๋กœ์šด ์ด๋‹จ ์ž๊ธฐ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ๋ณตํ˜ธ๊ธฐ๋Š” perfect ๋ถ€ํ˜ธ, BCH ๋ถ€ํ˜ธ ๋ฐ ์ตœ๋Œ€ ๊ฑฐ๋ฆฌ ๋ถ„๋ฆฌ (maximum distance separable, MDS) ๋ถ€ํ˜ธ์— ๋Œ€ํ•ด์„œ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ˆ˜์น˜ ๋ถ„์„์„ ํ†ตํ•ด, ์ œ์•ˆ๋œ ๋ณตํ˜ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด์˜ ์ž๊ธฐ ๋™ํ˜• ๊ตฐ ๋ณตํ˜ธ๊ธฐ๋ณด๋‹ค ๋‚ฎ์€ ๋ณต์žก๋„๋ฅผ ๋ณด์ด๋ฉฐ, ๋ช‡๋ช‡์˜ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ์†Œ์‹ค ์ฑ„๋„์—์„œ ์ตœ๋Œ€ ์šฐ๋„ (maximal likelihood, ML)๊ณผ ๊ฐ™์€ ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ์ž„์„ ๋ณด์ธ๋‹ค. MDS ๋ถ€ํ˜ธ์˜ ๊ฒฝ์šฐ, ํ™•์žฅ๋œ ํŒจ๋ฆฌํ‹ฐ๊ฒ€์‚ฌ ํ–‰๋ ฌ ๋ฐ ์ž‘์€ ํฌ๊ธฐ์˜ ํ–‰๋ ฌ์˜ ์—ญ์—ฐ์‚ฐ์„ ํ™œ์šฉํ•˜์˜€์„ ๊ฒฝ์šฐ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ (LRC)๋ฅผ ์ด์šฉํ•œ ์ด์ง„ ํ˜น์€ ์‚ผ์ง„ ๋ถ€๋ถ„ ์ ‘์† ๋ณต๊ตฌ ๋ถ€ํ˜ธ ์„ค๊ณ„๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ ์—ฐ๊ตฌ๋กœ์„œ, ์ˆœํ™˜ ๋ถ€ํ˜ธ ๋ฐ ์—ฐ์ ‘์„ ํ™œ์šฉํ•œ ์ด์ง„ ๋ฐ ์‚ผ์ง„ LRC ์„ค๊ณ„ ๊ธฐ๋ฒ•์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ตœ์†Œ ํ•ด๋ฐ ๊ฑฐ๋ฆฌ๊ฐ€ 4,5, ํ˜น์€ 6์ธ ์ œ์•ˆ๋œ ์ด์ง„ LRC ์ค‘ ์ผ๋ถ€๋Š” ์ƒํ•œ๊ณผ ๋น„๊ตํ•ด ๋ณด์•˜์„ ๋•Œ ์ตœ์  ์„ค๊ณ„์ž„์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋น„์Šทํ•œ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์ข‹์€ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์‚ผ์ง„ LRC๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ ์™ธ์— ๊ธฐ์กด์˜ LRC๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํฐ ํ•ด๋ฐ ๊ฑฐ๋ฆฌ์˜ ์ƒˆ๋กœ์šด LRC๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ LRC๋Š” ๋ถ„๋ฆฌ๋œ ๋ณต๊ตฌ ๊ตฐ ์กฐ๊ฑด์—์„œ ์ตœ์ ์ด๊ฑฐ๋‚˜ ์ตœ์ ์— ๊ฐ€๊นŒ์šด ๊ฐ’์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, GRP LDPC ๋ถ€ํ˜ธ๋Š” Nakagami-mm ๋ธ”๋ก ํŽ˜์ด๋”ฉ ๋ฐ ๋ธ”๋ก ๊ฐ„์„ญ์ด ์žˆ๋Š” ๋‘ ์ƒํƒœ์˜ ์ด์ง„ ๋Œ€์นญ ์ฑ„๋„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ฑ„๋„ ํ™˜๊ฒฝ์—์„œ GRP LDPC ๋ถ€ํ˜ธ๋Š” ํ•˜๋‚˜์˜ ๋ธ”๋ก ๊ฐ„์„ญ์ด ๋ฐœ์ƒํ–ˆ์„ ๊ฒฝ์šฐ, ์ด๋ก ์  ์„ฑ๋Šฅ์— ๊ฐ€๊นŒ์šด ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด๋Ÿฌํ•œ ์ด๋ก  ๊ฐ’์€ ์ฑ„๋„ ๋ฌธํ„ฑ๊ฐ’์ด๋‚˜ ์ฑ„๋„ outage ํ™•๋ฅ ์„ ํ†ตํ•ด ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ์„ค๊ณ„์—์„œ๋Š”, ๋ณ€ํ˜•๋œ PEXIT ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ๊ธฐ์ดˆ ํ–‰๋ ฌ์„ ์„ค๊ณ„ํ•œ๋‹ค. ๋˜ํ•œ AJ-PR LDPC ๋ถ€ํ˜ธ๋Š” ์ฃผํŒŒ์ˆ˜ ๋„์•ฝ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ถ”์  ์žฌ๋ฐ์ด ์žˆ๋Š” ํ™˜๊ฒฝ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ฑ„๋„ ํ™˜๊ฒฝ์œผ๋กœ MFSK ๋ณ€๋ณต์กฐ ๋ฐฉ์‹์˜ ๋ ˆ์ผ๋ฆฌ ๋ธ”๋ก ํŽ˜์ด๋”ฉ ๋ฐ ๋ฌด์ž‘์œ„ํ•œ ์ง€์† ์‹œ๊ฐ„์ด ์žˆ๋Š” ์žฌ๋ฐ ํ™˜๊ฒฝ์„ ๊ฐ€์ •ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์žฌ๋ฐ ํ™˜๊ฒฝ์œผ๋กœ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•ด, ๋ถ€๋ถ„ ๊ท ์ผ ๊ตฌ์กฐ ๋ฐ ํ•ด๋‹น๋˜๋Š” ๋ฐ€๋„ ์ง„ํ™” (density evolution, DE) ๊ธฐ๋ฒ•์ด ํ™œ์šฉ๋œ๋‹ค. ์—ฌ๋Ÿฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋Š” ์ถ”์  ์žฌ๋ฐ์ด ์กด์žฌํ•˜๋Š” ํ™˜๊ฒฝ์—์„œ ์ œ์•ˆ๋œ ๋ถ€ํ˜ธ๊ฐ€ 802.16e์— ์‚ฌ์šฉ๋˜์—ˆ๋˜ LDPC ๋ถ€ํ˜ธ๋ณด๋‹ค ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค.Contents Abstract Contents List of Tables List of Figures 1 INTRODUCTION 1.1 Background 1.2 Overview of Dissertation 1.3 Notations 2 Preliminaries 2.1 IED and AGD for Erasure Channel 2.1.1 Iterative Erasure Decoder 2.1.1 Automorphism Group Decoder 2.2. Binary Locally Repairable Codes for Distributed Storage System 2.2.1 Bounds and Optimalities of Binary LRCs 2.2.2 Existing Optimal Constructions of Binary LRCs 2.3 Channels with Block Interference and Jamming 2.3.1 Channels with Block Interference 2.3.2 Channels with Jamming with MFSK and FHSS Environment. 3 New Two-Stage Automorphism Group Decoders for Cyclic Codes in the Erasure Channel 3.1 Some Definitions 3.2 Modification of Parity Check Matrix and Two-Stage AGD 3.2.1 Modification of the Parity Check Matrix 3.2.2 A New Two-Stage AGD 3.2.3 Analysis of Modification Criteria for the Parity Check Matrix 3.2.4 Analysis of Decoding Complexity of TS-AGD 3.2.5 Numerical Analysis for Some Cyclic Codes 3.3 Construction of Parity Check Matrix and TS-AGD for Cyclic MDS Codes 3.3.1 Modification of Parity Check Matrix for Cyclic MDS Codes . 3.3.2 Proposed TS-AGD for Cyclic MDS Codes 3.3.3 Perfect Decoding by TS-AGD with Expanded Parity Check Matrix for Cyclic MDS Codes 3.3.4 TS-AGD with Submatrix Inversion for Cyclic MDS Codes . . 4 New Constructions of Binary and Ternary LRCs Using Cyclic Codes and Existing LRCs 4.1 Constructions of Binary LRCs Using Cyclic Codes 4.2 Constructions of Linear Ternary LRCs Using Cyclic Codes 4.3 Constructions of Binary LRCs with Disjoint Repair Groups Using Existing LRCs 4.4 New Constructions of Binary Linear LRCs with d โ‰ฅ 8 Using Existing LRCs 5 New Constructions of Generalized RP LDPC Codes for Block Interference and Partially Regular LDPC Codes for Follower Jamming 5.1 Generalized RP LDPC Codes for a Nonergodic BI 5.1.1 Minimum Blockwise Hamming Weight 5.1.2 Construction of GRP LDPC Codes 5.2 Asymptotic and Numerical Analyses of GRP LDPC Codes 5.2.1 Asymptotic Analysis of LDPC Codes 5.2.2 Numerical Analysis of Finite-Length LDPC Codes 5.3 Follower Noise Jamming with Fixed Scan Speed 5.4 Anti-Jamming Partially Regular LDPC Codes for Follower Noise Jamming 5.4.1 Simplified Channel Model and Corresponding Density Evolution 5.4.2 Construction of AJ-PR-LDPC Codes Based on DE 5.5 Numerical Analysis of AJ-PR LDPC Codes 6 Conclusion Abstract (In Korean)Docto
    • โ€ฆ
    corecore