47 research outputs found

    Probabilistic Modeling Paradigms for Audio Source Separation

    Get PDF
    This is the author's final version of the article, first published as E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley, M. E. Davies. Probabilistic Modeling Paradigms for Audio Source Separation. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 7, pp. 162-185. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch007file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04Most sound scenes result from the superposition of several sources, which can be separately perceived and analyzed by human listeners. Source separation aims to provide machine listeners with similar skills by extracting the sounds of individual sources from a given scene. Existing separation systems operate either by emulating the human auditory system or by inferring the parameters of probabilistic sound models. In this chapter, the authors focus on the latter approach and provide a joint overview of established and recent models, including independent component analysis, local time-frequency models and spectral template-based models. They show that most models are instances of one of the following two general paradigms: linear modeling or variance modeling. They compare the merits of either paradigm and report objective performance figures. They also,conclude by discussing promising combinations of probabilistic priors and inference algorithms that could form the basis of future state-of-the-art systems

    Frequency Domain Independent Component Analysis Applied To Wireless Communications Over Frequency-selective Channels

    Get PDF
    In wireless communications, frequency-selective fading is a major source of impairment for wireless communications. In this research, a novel Frequency-Domain Independent Component Analysis (ICA-F) approach is proposed to blindly separate and deconvolve signals traveling through frequency-selective, slow fading channels. Compared with existing time-domain approaches, the ICA-F is computationally efficient and possesses fast convergence properties. Simulation results confirm the effectiveness of the proposed ICA-F. Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in wireless communications nowadays. However, OFDM systems are very sensitive to Carrier Frequency Offset (CFO). Thus, an accurate CFO compensation technique is required in order to achieve acceptable performance. In this dissertation, two novel blind approaches are proposed to estimate and compensate for CFO within the range of half subcarrier spacing: a Maximum Likelihood CFO Correction approach (ML-CFOC), and a high-performance, low-computation Blind CFO Estimator (BCFOE). The Bit Error Rate (BER) improvement of the ML-CFOC is achieved at the expense of a modest increase in the computational requirements without sacrificing the system bandwidth or increasing the hardware complexity. The BCFOE outperforms the existing blind CFO estimator [25, 128], referred to as the YG-CFO estimator, in terms of BER and Mean Square Error (MSE), without increasing the computational complexity, sacrificing the system bandwidth, or increasing the hardware complexity. While both proposed techniques outperform the YG-CFO estimator, the BCFOE is better than the ML-CFOC technique. Extensive simulation results illustrate the performance of the ML-CFOC and BCFOE approaches

    Perceptually motivated blind source separation of convolutive audio mixtures

    Get PDF

    Exploiting the bimodality of speech in the cocktail party problem

    Get PDF
    The cocktail party problem is one of following a conversation in a crowded room where there are many competing sound sources, such as the voices of other speakers or music. To address this problem using computers, digital signal processing solutions commonly use blind source separation (BSS) which aims to separate all the original sources (voices) from the mixture simultaneously. Traditionally, BSS methods have relied on information derived from the mixture of sources to separate the mixture into its constituent elements. However, the human auditory system is well adapted to handle the cocktail party scenario, using both auditory and visual information to follow (or hold) a conversation in a such an environment. This thesis focuses on using visual information of the speakers in a cocktail party like scenario to aid in improving the performance of BSS. There are several useful applications of such technology, for example: a pre-processing step for a speech recognition system, teleconferencing or security surveillance. The visual information used in this thesis is derived from the speaker's mouth region, as it is the most visible component of speech production. Initial research presented in this thesis considers a joint statistical model of audio and visual features, which is used to assist in control ling the convergence behaviour of a BSS algorithm. The results of using the statistical models are compared to using the raw audio information alone and it is shown that the inclusion of visual information greatly improves its convergence behaviour. Further research focuses on using the speaker's mouth region to identify periods of time when the speaker is silent through the development of a visual voice activity detector (V-VAD) (i.e. voice activity detection using visual information alone). This information can be used in many different ways to simplify the BSS process. To this end, two novel V-VADs were developed and tested within a BSS framework, which result in significantly improved intelligibility of the separated source associated with the V-VAD output. Thus the research presented in this thesis confirms the viability of using visual information to improve solutions to the cocktail party problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Exploiting the bimodality of speech in the cocktail party problem

    Get PDF
    The cocktail party problem is one of following a conversation in a crowded room where there are many competing sound sources, such as the voices of other speakers or music. To address this problem using computers, digital signal processing solutions commonly use blind source separation (BSS) which aims to separate all the original sources (voices) from the mixture simultaneously. Traditionally, BSS methods have relied on information derived from the mixture of sources to separate the mixture into its constituent elements. However, the human auditory system is well adapted to handle the cocktail party scenario, using both auditory and visual information to follow (or hold) a conversation in a such an environment. This thesis focuses on using visual information of the speakers in a cocktail party like scenario to aid in improving the performance of BSS. There are several useful applications of such technology, for example: a pre-processing step for a speech recognition system, teleconferencing or security surveillance. The visual information used in this thesis is derived from the speaker's mouth region, as it is the most visible component of speech production. Initial research presented in this thesis considers a joint statistical model of audio and visual features, which is used to assist in control ling the convergence behaviour of a BSS algorithm. The results of using the statistical models are compared to using the raw audio information alone and it is shown that the inclusion of visual information greatly improves its convergence behaviour. Further research focuses on using the speaker's mouth region to identify periods of time when the speaker is silent through the development of a visual voice activity detector (V-VAD) (i.e. voice activity detection using visual information alone). This information can be used in many different ways to simplify the BSS process. To this end, two novel V-VADs were developed and tested within a BSS framework, which result in significantly improved intelligibility of the separated source associated with the V-VAD output. Thus the research presented in this thesis confirms the viability of using visual information to improve solutions to the cocktail party problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Online Audio-Visual Multi-Source Tracking and Separation: A Labeled Random Finite Set Approach

    Get PDF
    The dissertation proposes an online solution for separating an unknown and time-varying number of moving sources using audio and visual data. The random finite set framework is used for the modeling and fusion of audio and visual data. This enables an online tracking algorithm to estimate the source positions and identities for each time point. With this information, a set of beamformers can be designed to separate each desired source and suppress the interfering sources

    Exploiting the bimodality of speech in the cocktail party problem

    Get PDF
    The cocktail party problem is one of following a conversation in a crowded room where there are many competing sound sources, such as the voices of other speakers or music. To address this problem using computers, digital signal processing solutions commonly use blind source separation (BSS) which aims to separate all the original sources (voices) from the mixture simultaneously. Traditionally, BSS methods have relied on information derived from the mixture of sources to separate the mixture into its constituent elements. However, the human auditory system is well adapted to handle the cocktail party scenario, using both auditory and visual information to follow (or hold) a conversation in a such an environment. This thesis focuses on using visual information of the speakers in a cocktail party like scenario to aid in improving the performance of BSS. There are several useful applications of such technology, for example: a pre-processing step for a speech recognition system, teleconferencing or security surveillance. The visual information used in this thesis is derived from the speaker's mouth region, as it is the most visible component of speech production. Initial research presented in this thesis considers a joint statistical model of audio and visual features, which is used to assist in control ling the convergence behaviour of a BSS algorithm. The results of using the statistical models are compared to using the raw audio information alone and it is shown that the inclusion of visual information greatly improves its convergence behaviour. Further research focuses on using the speaker's mouth region to identify periods of time when the speaker is silent through the development of a visual voice activity detector (V-VAD) (i.e. voice activity detection using visual information alone). This information can be used in many different ways to simplify the BSS process. To this end, two novel V-VADs were developed and tested within a BSS framework, which result in significantly improved intelligibility of the separated source associated with the V-VAD output. Thus the research presented in this thesis confirms the viability of using visual information to improve solutions to the cocktail party problem

    Acoustic Speaker Localization with Strong Reverberation and Adaptive Feature Filtering with a Bayes RFS Framework

    Get PDF
    The thesis investigates the challenges of speaker localization in presence of strong reverberation, multi-speaker tracking, and multi-feature multi-speaker state filtering, using sound recordings from microphones. Novel reverberation-robust speaker localization algorithms are derived from the signal and room acoustics models. A multi-speaker tracking filter and a multi-feature multi-speaker state filter are developed based upon the generalized labeled multi-Bernoulli random finite set framework. Experiments and comparative studies have verified and demonstrated the benefits of the proposed methods

    System approach to robust acoustic echo cancellation through semi-blind source separation based on independent component analysis

    Get PDF
    We live in a dynamic world full of noises and interferences. The conventional acoustic echo cancellation (AEC) framework based on the least mean square (LMS) algorithm by itself lacks the ability to handle many secondary signals that interfere with the adaptive filtering process, e.g., local speech and background noise. In this dissertation, we build a foundation for what we refer to as the system approach to signal enhancement as we focus on the AEC problem. We first propose the residual echo enhancement (REE) technique that utilizes the error recovery nonlinearity (ERN) to "enhances" the filter estimation error prior to the filter adaptation. The single-channel AEC problem can be viewed as a special case of semi-blind source separation (SBSS) where one of the source signals is partially known, i.e., the far-end microphone signal that generates the near-end acoustic echo. SBSS optimized via independent component analysis (ICA) leads to the system combination of the LMS algorithm with the ERN that allows for continuous and stable adaptation even during double talk. Second, we extend the system perspective to the decorrelation problem for AEC, where we show that the REE procedure can be applied effectively in a multi-channel AEC (MCAEC) setting to indirectly assist the recovery of lost AEC performance due to inter-channel correlation, known generally as the "non-uniqueness" problem. We develop a novel, computationally efficient technique of frequency-domain resampling (FDR) that effectively alleviates the non-uniqueness problem directly while introducing minimal distortion to signal quality and statistics. We also apply the system approach to the multi-delay filter (MDF) that suffers from the inter-block correlation problem. Finally, we generalize the MCAEC problem in the SBSS framework and discuss many issues related to the implementation of an SBSS system. We propose a constrained batch-online implementation of SBSS that stabilizes the convergence behavior even in the worst case scenario of a single far-end talker along with the non-uniqueness condition on the far-end mixing system. The proposed techniques are developed from a pragmatic standpoint, motivated by real-world problems in acoustic and audio signal processing. Generalization of the orthogonality principle to the system level of an AEC problem allows us to relate AEC to source separation that seeks to maximize the independence, hence implicitly the orthogonality, not only between the error signal and the far-end signal, but rather, among all signals involved. The system approach, for which the REE paradigm is just one realization, enables the encompassing of many traditional signal enhancement techniques in analytically consistent yet practically effective manner for solving the enhancement problem in a very noisy and disruptive acoustic mixing environment.PhDCommittee Chair: Biing-Hwang Juang; Committee Member: Brani Vidakovic; Committee Member: David V. Anderson; Committee Member: Jeff S. Shamma; Committee Member: Xiaoli M
    corecore