1,321 research outputs found

    Compressed Text Indexes:From Theory to Practice!

    Full text link
    A compressed full-text self-index represents a text in a compressed form and still answers queries efficiently. This technology represents a breakthrough over the text indexing techniques of the previous decade, whose indexes required several times the size of the text. Although it is relatively new, this technology has matured up to a point where theoretical research is giving way to practical developments. Nonetheless this requires significant programming skills, a deep engineering effort, and a strong algorithmic background to dig into the research results. To date only isolated implementations and focused comparisons of compressed indexes have been reported, and they missed a common API, which prevented their re-use or deployment within other applications. The goal of this paper is to fill this gap. First, we present the existing implementations of compressed indexes from a practitioner's point of view. Second, we introduce the Pizza&Chili site, which offers tuned implementations and a standardized API for the most successful compressed full-text self-indexes, together with effective testbeds and scripts for their automatic validation and test. Third, we show the results of our extensive experiments on these codes with the aim of demonstrating the practical relevance of this novel and exciting technology

    A digital library of language learning exercises

    Get PDF
    Recent years have seen widespread adoption of the Internet for language teaching and learning. Interactive systems on the World-Wide Web provide useful alternatives to face-to-face tuition, and both teachers and learners can benefit from the exercises available. However, although there is a wealth of suitable material, it is hard to find because it is scattered around the web. Moreover, teachers are restricted by the material that is available, and cannot provide their own. To tackle these problems we have constructed a digital library of language learning exercises that presents students with different kinds of exercise, and also lets teachers contribute new material. We first reviewed existing language learning systems on the web in order to develop a taxonomy of exercise types used for language activity. A prototype, ELLE, based on this taxonomy, provides various kinds of interactive exercises using material that teachers submit. The system has been evaluated by practicing language teachers

    Optimizing XML Compression

    Full text link
    The eXtensible Markup Language (XML) provides a powerful and flexible means of encoding and exchanging data. As it turns out, its main advantage as an encoding format (namely, its requirement that all open and close markup tags are present and properly balanced) yield also one of its main disadvantages: verbosity. XML-conscious compression techniques seek to overcome this drawback. Many of these techniques first separate XML structure from the document content, and then compress each independently. Further compression gains can be realized by identifying and compressing together document content that is highly similar, thereby amortizing the storage costs of auxiliary information required by the chosen compression algorithm. Additionally, the proper choice of compression algorithm is an important factor not only for the achievable compression gain, but also for access performance. Hence, choosing a compression configuration that optimizes compression gain requires one to determine (1) a partitioning strategy for document content, and (2) the best available compression algorithm to apply to each set within this partition. In this paper, we show that finding an optimal compression configuration with respect to compression gain is an NP-hard optimization problem. This problem remains intractable even if one considers a single compression algorithm for all content. We also describe an approximation algorithm for selecting a partitioning strategy for document content based on the branch-and-bound paradigm.Comment: 16 pages, extended version of paper accepted for XSym 200

    Improved ESP-index: a practical self-index for highly repetitive texts

    Full text link
    While several self-indexes for highly repetitive texts exist, developing a practical self-index applicable to real world repetitive texts remains a challenge. ESP-index is a grammar-based self-index on the notion of edit-sensitive parsing (ESP), an efficient parsing algorithm that guarantees upper bounds of parsing discrepancies between different appearances of the same subtexts in a text. Although ESP-index performs efficient top-down searches of query texts, it has a serious issue on binary searches for finding appearances of variables for a query text, which resulted in slowing down the query searches. We present an improved ESP-index (ESP-index-I) by leveraging the idea behind succinct data structures for large alphabets. While ESP-index-I keeps the same types of efficiencies as ESP-index about the top-down searches, it avoid the binary searches using fast rank/select operations. We experimentally test ESP-index-I on the ability to search query texts and extract subtexts from real world repetitive texts on a large-scale, and we show that ESP-index-I performs better that other possible approaches.Comment: This is the full version of a proceeding accepted to the 11th International Symposium on Experimental Algorithms (SEA2014
    • 

    corecore