410 research outputs found

    Product Tracing in the Norwegian Fishing Industry Supply Chain Utilizing GoQuorum Blockchain and Smart Contracts

    Get PDF
    The Norwegian fishing industry faces a significant issue of fishery crimes, with product traceability systems presenting a potential solution to counter these illegal activities. Current supply chain management in the seafood industry is vulnerable to information alterations, thereby complicating product traceability. Blockchain technology, with its unique properties, offers an interesting approach to address these challenges. Despite this, existing blockchain-based product traceability systems often fail to integrate government regulation and provide limited access to traceability data for consumers. Moreover, those providing such access often lack user-friendliness. This thesis explores if a blockchain-based product traceability system can support supply chain management, enhance consumer confidence, and enforce regulatory compliance. We conducted a review of existing literature and assessed the potential of blockchain technology to optimize supply chain management. Furthermore, a traceability system, entitled SeaChain, incorporating a permissioned blockchain, smart contracts, and governmental regulations was developed. We evaluated this system and compared it with existing systems. Our findings suggest that blockchain technology can enhance supply chain management, bolster consumer trust, and aid in mitigating fishery crimes. The research conducted provides valuable insights for improving supply chain management and contributes to future studies in this field

    The enterprise blockchain design framework and its application to an e-Procurement ecosystem

    Get PDF
    The research work of this paper has been partially funded by the project VORTAL INTER DATA (n° 038361), co-financed by Vortal and COMPETE Program P2020. We would also like to thank UNIDEMI, DEMI, and LASI for providing us with the research infrastucture and resources to conduct this research. Publisher Copyright: © 2022 Elsevier LtdBlockchain technologies have seen a steady growth in interest from industries as the technology is gaining maturity. It is offering a novel way to establish trust amongst multiple stakeholders without relying or trusting centralised authorities. While its use as a decentralised store of value has been validated through the emergence of cryptocurrencies, its use case in industrial applications with multiple stakeholder ecosystems such as industrial supply chain management, is still at an early stage of design and experimentation where private blockchains are used as opposed to public blockchains. Many enterprise blockchain projects failed to gain traction after initial launches, due to inefficient design, lack of incentives to all stakeholders or simply because the use of blockchain was not really necessary in the first place. There has been a need for a framework that allows blockchain designers and researchers to evaluate scenarios when a blockchain solution is useful and design the key configurations for an enterprise blockchain solution. Literature on blockchain architectures are sparse and only applicable to specific use cases or functionalities. This paper proposes a comprehensive Enterprise Blockchain Design Framework (EBDF), that not only identifies the relevant use cases when a blockchain must be utilised, but also details all the characteristics and configurations for designing an enterprise blockchain ecosystem, applicable to multiple industries. To validate the EBDF, we apply the same to the Vortal e-Procurement ecosystem allowing for multiple platforms to interoperate with greater transparency and accountability over the proposed blockchain framework. In this use case, many vendors bid for procurement procedures, often for publicly managed funds where it is extremely vital that full transparency and accountability is ensured in the entire process. Ensuring that certain digital certification functions, such as timestamps are independent from e-Procurement platform owners has been a challenge. Blockchain technology has emerged as a promising solution for not only ensuring transparency and immutability of records, but also providing for interoperability across different platforms by acting as a trusted third-party. The applied framework is used to design a Hyperledger based blockchain solution with some of the key architectural elements that could fulfil these needs while presenting the advantages of such a solution.publishersversionpublishe

    Distributed Ledger Technologies in Supply Chain Security Management: A Comprehensive Survey

    Get PDF
    This is an accepted manuscript of an article published by IEEE in IEEE Transactions on Engineering Management, available online at: https://ieeexplore.ieee.org/document/9366288 The accepted version of the publication may differ from the final published versionSupply-chains (SC) present performance bottlenecks that contribute to a high level of costs, infltration of product quality, and impact productivity. Examples of such inhibitors include the bullwhip effect, new product lines, high inventory, and restrictive data fows. These bottlenecks can force manufacturers to source more raw materials and increase production signifcantly. Also, restrictive data fow in a complex global SC network generally slows down the movement of goods and services. The use of Distributed LedgerTechnologies (DLT) in supply chain management (SCM) demonstrates the potentials to to reduce these bottlenecks through transparency, decentralization, and optimizations in data management. These technologies promise to enhance the trustworthiness of entities within the supply chain, ensure the accuracy of data-driven operations, and enable existing SCM processes to migrate from a linear to a fully circular economy. This paper presents a comprehensive review of 111 articles published in the public domain in the use and effcacyofDLTin SC.It acts asaroadmapfor current and futureresearchers whofocus onSC Security Management to better understand the integration of digital technologies such as DLT. We clustered these articles using standard descriptors linked to trustworthiness, namely, immutability, transparency, traceability, and integrity

    Distributed Ledger Technologies in Supply Chain Security Management: A Comprehensive Survey

    Get PDF
    Supply chains (SC) present performance bottlenecks that contribute to a high level of costs, infiltration of product quality, and impact productivity. Examples of such inhibitors include the bullwhip effect, new product lines, high inventory, and restrictive data flows. These bottlenecks can force manufacturers to source more raw materials and increase production significantly. Also, restrictive data flow in a complex global SC network generally slows down the movement of goods and services. The use of distributed ledger technologies (DLT) in SC management (SCM) demonstrates the potentials to reduce these bottlenecks through transparency, decentralization, and optimizations in data management. These technologies promise to enhance the trustworthiness of entities within the SC, ensure the accuracy of data-driven operations, and enable existing SCM processes to migrate from a linear to a fully circular economy. This article presents a comprehensive review of 111 articles published in the public domain in the use and efficacy of DLT in SC. It acts as a roadmap for current and future researchers who focus on SC security management to better understand the integration of digital technologies such as DLT. We clustered these articles using standard descriptors linked to trustworthiness, namely, immutability, transparency, traceability, and integrity

    The rise of blockchain technology in agriculture and food supply chains

    Get PDF
    Blockchain is an emerging digital technology allowing ubiquitous financial transactions among distributed untrusted parties, without the need of intermediaries such as banks. This article examines the impact of blockchain technology in agriculture and food supply chain, presents existing ongoing projects and initiatives, and discusses overall implications, challenges and potential, with a critical view over the maturity of these projects. Our findings indicate that blockchain is a promising technology towards a transparent supply chain of food, with many ongoing initiatives in various food products and food-related issues, but many barriers and challenges still exist, which hinder its wider popularity among farmers and systems. These challenges involve technical aspects, education, policies and regulatory frameworks.info:eu-repo/semantics/acceptedVersio

    A blockchain-based framework for trusted quality data sharing towards zero-defect manufacturing

    Get PDF
    There is a current wave of a new generation of digital solutions based on intelligent systems, hybrid digital twins and AI-driven optimization tools to assure quality in smart factories. Such digital solutions heavily depend on quality-related information within the supply chain business ecosystem to drive zero-waste value chains. To empower zero-waste value chain strategies with meaningful, reliable, and trustful data, there must be a solution for end-to-end industrial data traceability, trust, and security across multiple process chains or even inter-organizational supply chains. In this paper, we first present Product, Process, and Data quality services to drive zero-waste value chain strategies. Following this, we present the Trusted Framework (TF), which is a key enabler for the secure and effective sharing of quality-related information within the supply chain business ecosystem, and thus for quality optimization actions towards zero-defect manufacturing. The TF specification includes the data model and format of the Process/Product/Data (PPD) Quality Hallmark, the OpenAPI exposed to factory system and a comprehensive Identity Management layer, for secure horizontal- and vertical quality data integration. The PPD hallmark and the TF already address some of the industrial needs to have a trusted approach to share quality data between the different stakeholders of the production chain to empower zero-waste value chain strategies.publishedVersio

    Implementation of Blockchain Technology in Supply Chain

    Get PDF
    corecore