4,351 research outputs found

    Employability skills for hospitality students in Malaysia

    Get PDF
    Malaysia needs high skilled workforce to support growth of the industry. With dynamically changing job market and progressive technological change, employees are expected to keep abreast of global economics. In the process of achieving the status of developed nation by the year 2020, Malaysia needs to restructure its workforce to ensure that middle level workers are highly skilled. Current job environment demands multi-task and skills. Thus, university graduates must be prepared to meet the demand especially in the hospitality industry. The purpose of this study is to identify the level of employability skills in the hospitality field. This research applied quantitative methodology. The respondents consist of final year students in bakery and culinary programme. Stratified sampling was used to select students in hospitality programs from 22 vocational colleges in Malaysia. Questionnaires were distributed to 841 students in five regions which are Central, South, North, East and East Malaysia (Sarawak) in Malaysia. Descriptive analysis was used to analyse the quantitative data. The results showed that the level of hospitality employability skills among vocational students in Malaysia were at high level of competence (93.2%). The research has brought meaningful implications for hospitality vocational students, employers and policy makers

    Establishing the Relative Merits of Interior and Spoke-Type Permanent-Magnet Machines With Ferrite or NdFeB Through Systematic Design Optimization

    Get PDF
    In this paper, a multiobjective design optimization method combining design-of-experiments techniques and differential-evolution algorithms is presented. The method was implemented and utilized in order to provide practical engineering insights for the optimal design of interior and spoke-type permanent-magnet machines. Two combinations with 12 slots and 8 poles and 12 slots and 10 poles, respectively, have been studied in conjunction with rare-earth neodymium-iron-boron (NdFeB) and ferrites. As part of the optimization process, a computationally efficient finite-element electromagnetic analysis was employed for estimating the performance of thousands of candidate designs. Three optimization objectives were concurrently considered for minimum total material cost, power losses, and torque ripple, respectively. Independent variables were considered for both the stator and rotor geometries. A discussion based on a systematic comparison is included, showing, among other things and despite common misconception, that comparable cost versus loss Paretos can be achieved with any of the rotor topologies studied

    Computationally Efficient Strand Eddy Current Loss Calculation in Electric Machines

    Get PDF
    A fast finite element (FE) based method for the calculation of eddy current losses in the stator windings of randomly wound electric machines is presented in this paper. The method is particularly suitable for implementation in large-scale design optimization algorithms where a qualitative characterization of such losses at higher speeds is most beneficial for identification of the design solutions that exhibit the lowest overall losses including the ac losses in the stator windings. Unlike the common practice of assuming a constant slot fill factor s f for all the design variations, the maximum s f in the developed method is determined based on the individual slot structure/dimensions and strand wire specifications. Furthermore, in lieu of detailed modeling of the conductor strands in the initial FE model, which significantly adds to the complexity of the problem, an alternative rectangular coil modeling subject to a subsequent flux mapping technique for determination of the impinging flux on each individual strand is pursued. Rather than pursuing the precise estimation of ac conductor losses, the research focus of this paper is placed on the development of a computationally efficient technique for the derivation of strand eddy current losses applicable in design optimization, especially where both the electromagnetic and thermal machine behavior are accounted for. A fractional-slot concentrated winding permanent magnet synchronous machine is used for the purpose of this study due to the higher slot leakage flux and slot opening fringing flux of such machines, which are the major contributors to strand eddy current losses in the windings. The analysis is supplemented with an investigation on the influence of the electrical loading on ac winding loss effects for this machine design, a subject that has received less attention in the literature. Experimental ac loss measurements on a 12-slot 10-pole stator assembly will be discussed to verify the existing trends in the simulation result

    A SyR and IPM machine design methodology assisted by optimization algorithms

    Get PDF
    The design optimization of synchronous reluctance (SyR) machine and its extension to internal permanent magnet (IPM) motors for wide speed ranges is considered in this paper by means of a Finite Element Analysis-based multi-objective genetic algorithm (MOGA). The paper is focused on the rotor design, that is controversial key aspect of the design of high saliency SyR and IPM machines, due to the difficult modeling dominated by magnetic saturation. A three step procedure is presented, to obtain a starting SyR design with the optimal torque versus torque ripple compromise and then properly include PMs into the SyR geometry, given the desired constant power speed range of the final IPM machine. The designed rotors have been extensively analyzed by computer simulations and two SyR prototypes have been realized to demonstrate the feasibility of the design procedur

    Flux Weakening Strategy Optimization for Five-Phase PM Machine with Concentrated Windings

    Get PDF
    The paper applies an Efficient Global Optimization method (EGO) to improve the efficiency, in flux weakening region, of a given 5-phase Permanent Magnet (PM) machine. An optimal control for the four independent currents is thus defined. Moreover, a modification proposal of the machine geometry is added to the optimization process of the global drive. The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region. But these losses, which highly depend on magnetic state of the machine, must be calculated by Finite Element Method (FEM) to be accurate. The FEM has the drawback to be time consuming. It is why a direct optimization using FEM is critical. EGO method, using sparingly FEM, allows to find a feasible solution to this hard optimization problem of control and design of multi-phase drive

    Analytical and numerical computation of air-gap magnetic fields in brushless motors with surface permanent magnets

    Get PDF
    This paper extends the theory of the air-gap magnetic field in permanent-magnet (PM) brushless motors. Scalar and vector potential solutions to the field equations are brought together to unify many of the important practical methods already in use. The theory admits a more general representation of the magnetization vector than has been previously assumed, including both the radial and tangential components, and variation with radius. The work is applied in the design of PM motors where there is a requirement to minimize noise and torque ripple, and maximize efficiency, and a continuing need for improvements in the accuracy and rigor of design calculations. The air-gap flux-density distribution is at the heart of the design process, and it is desirable to study different magnetization patterns, including imperfections in the magnetization, for a wide range of magnet shapes. This paper shows the application of the analytical solutions in comparison with a new finite-element procedure, with test results on a prototype motor, and with simpler, older methods of calculation based on magnetic equivalent circuits. The comparison brings out many interesting points in relation to the accuracy and the speed and practicality of the various methods

    A Computationally Efficient Method for Calculation of Strand Eddy Current Losses in Electric Machines

    Get PDF
    In this paper, a fast finite element (FE)-based method for the calculation of eddy current losses in the stator windings of randomly wound electric machines with a focus on fractional slot concentrated winding (FSCW) permanent magnet (PM) machines will be presented. The method is particularly suitable for implementation in large-scale design optimization algorithms where a qualitative characterization of such losses at higher speeds is most beneficial for identification of the design solutions which exhibit the lowest overall losses including the ac losses in the stator windings. Unlike the common practice of assuming a constant slot fill factor, sf, for all the design variations, the maximum sf in the developed method is determined based on the individual slot structure/dimensions and strand wire specifications. Furthermore, in lieu of detailed modeling of the conductor strands in the initial FE model, which significantly adds to the complexity of the problem, an alternative rectangular coil modeling subject to a subsequent flux mapping technique for determination of the impinging flux on each individual strand is pursued. The research focus of the paper is placed on development of a computationally efficient technique for the ac winding loss derivation applicable in design-optimization, where both the electromagnetic and thermal machine behavior are accounted for. The analysis is supplemented with an investigation on the influence of the electrical loading on ac winging loss effects for a particular machine design, a subject which has received less attention in the literature. Experimental ac loss measurements on a 12-slot 10-pole stator assembly will be discussed to verify the existing trends in the simulation results

    A general magnetic-energy-based torque estimator: validation via a permanent-magnet motor drive

    Get PDF
    This paper describes the use of the current–flux-linkage (i−psii{-}psi ) diagram to validate the performance of a general magnetic-energy-based torque estimator. An early step in the torque estimation is the use of controller duty cycles to reconstruct the average phase-voltage waveform during each pulsewidth-modulation (PWM) switching period. Samples over the fundamental period are recorded for the estimation of the average torque. The fundamental period may not be an exact multiple of the sample time. For low speed, the reconstructed voltage requires additional compensation for inverter-device losses. Experimental validation of this reconstructed waveform with the actual PWM phase-voltage waveform is impossible due to the fact that one is PWM in nature and the other is the average value during the PWM period. A solution to this is to determine the phase flux-linkage using each waveform and then plot the resultant i−psii{-}psi loops. The torque estimation is based on instantaneous measurements and can therefore be applied to any electrical machine. This paper includes test results for a three-phase interior permanent-magnet brushless ac motor operating with both sinusoidal and nonsinusoidal current waveforms

    Embedded finite-element solver for computation of brushless permanent-magnet motors

    Get PDF
    This paper describes the theory underlying the formulation of a “minimum set” of finite-element solutions to be used in the design and analysis of saturated brushless permanent-magnet motors. The choice of finite-element solutions is described in terms of key points on the flux–MMF diagram. When the diagram has a regular shape, a huge reduction in finite-element analysis is possible with no loss of accuracy. If the loop is irregular, many more solutions are needed. This paper describes an efficient technique in which a finite-element solver is associated with a classical dd– qq-axis circuit model in such a way that the number of finite-element solutions in one electrical half-cycle can be varied between 1 and 360. The finite-element process is used to determine not only the average torque but also the saturated inductances as the rotor rotates
    • 

    corecore