363 research outputs found

    Permanence and periodicity of a delayed ratio-dependent predator–prey model with Holling type functional response and stage structure

    Get PDF
    AbstractA periodic and delayed ratio-dependent predator–prey system with Holling type III functional response and stage structure for both prey and predator is investigated. It is assumed that immature predator and mature individuals of each species are divided by a fixed age, and immature predator do not have the ability to attack prey. Sufficient conditions are derived for the permanence and existence of positive periodic solution of the model. Numerical simulations are presented to illustrate the feasibility of our main results

    Permanence and extinction for a delayed periodic predator-prey system

    Get PDF
    In this paper, the permanence, extinction and periodic solution of a delayed periodic predator-prey system with Holling type IV functional response and stage structure for prey is studied. By means of comparison theorem, some sufficient and necessary conditions are derived for the permanence of the system

    Advanced Nonlinear Dynamics of Population Biology and Epidemiology

    Get PDF
    abstract: Modern biology and epidemiology have become more and more driven by the need of mathematical models and theory to elucidate general phenomena arising from the complexity of interactions on the numerous spatial, temporal, and hierarchical scales at which biological systems operate and diseases spread. Epidemic modeling and study of disease spread such as gonorrhea, HIV/AIDS, BSE, foot and mouth disease, measles, and rubella have had an impact on public health policy around the world which includes the United Kingdom, The Netherlands, Canada, and the United States. A wide variety of modeling approaches are involved in building up suitable models. Ordinary differential equation models, partial differential equation models, delay differential equation models, stochastic differential equation models, difference equation models, and nonautonomous models are examples of modeling approaches that are useful and capable of providing applicable strategies for the coexistence and conservation of endangered species, to prevent the overexploitation of natural resources, to control disease’s outbreak, and to make optimal dosing polices for the drug administration, and so forth.View the article as published at https://www.hindawi.com/journals/aaa/2014/214514

    Global dynamics of a predator-prey system with Holling type II functional response

    Get PDF
    In this paper, a predator-prey system with Holling type II functional response and stage structure is investigated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the system is studied. The existence of the orbitally asymptotically stable periodic solution is established. By using suitable Lyapunov functions and the LaSalle invariance principle, it is proven that the predator-extinction equilibrium is globally asymptotically stable when the coexistence equilibrium is not feasible, and sufficient conditions are derived for the global stability of the coexistence equilibrium

    A nonautonomous predator–prey system with stage structure and double time delays

    Get PDF
    AbstractIn the present paper we study a nonautonomous predator–prey model with stage structure and double time delays due to maturation time for both prey and predator. We assume that the immature and mature individuals of each species are divided by a fixed age, and the mature predator only attacks the immature prey. Based on some comparison arguments we discuss the permanence of the species. By virtue of the continuation theorem of coincidence degree theory, we prove the existence of positive periodic solution. By means of constructing an appropriate Lyapunov functional, we obtain sufficient conditions for the uniqueness and the global stability of positive periodic solution. Two examples are given to illustrate the feasibility of our main results

    Modelling and Analysis of a Pest-Control Pollution Model with Integrated Control Tactics

    Get PDF
    A hybrid impulsive pest control model with stage structure for pest and Holling II functional response is proposed and investigated, in which the effects of impulsive pesticide input in the environment and in the organism are considered. Sufficient conditions for global attractiveness of the pest-extinction periodic solution and permanence of the system are obtained, which show that there exists a globally asymptotically stable pest-extinction periodic solution when the number of natural enemies released is more than some critical value, whereas the system can be permanent when the number of natural enemies released is less than another critical value. Furthermore, numerical simulations are carried out to illustrate our theoretical results and facilitate their interpretation

    Analysis of an Impulsive One-Predator and Two-Prey System with Stage-Structure and Generalized Functional Response

    Get PDF
    An impulsive one-predator and two-prey system with stage-structure and generalized functional response is proposed and analyzed. By reasonable assumption and theoretical analysis, we obtain conditions for the existence and global attractivity of the predator-extinction periodic solution. Sufficient conditions for the permanence of this system are established via impulsive differential comparison theorem. Furthermore, abundant results of numerical simulations are given by choosing two different and concrete functional responses, which indicate that impulsive effects, stage-structure, and functional responses are vital to the dynamical properties of this system. Finally, the biological meanings of the main results and some control strategies are given

    Controllability of an eco-epidemiological system with disease transmission delay: A theoretical study

    Get PDF
    This paper deals with the qualitative analysis of a disease transmission delay induced prey preda-tor system in which disease spreads among the predator species only. The growth of the preda-tors’ susceptible and infected subpopulations is assumed as modified Leslie–Gower type. Suffi-cient conditions for the persistence, permanence, existence and stability of equilibrium points are obtained. Global asymptotic stability of the system is investigated around the coexisting equilib-rium using a geometric approach. The existence of Hopf bifurcation phenomenon is also exam-ined with respect to some important parameters of the system. The criterion for disease a trans-mission delay the induced Hopf bifurcation phenomenon is obtained and subsequently, we use a normal form method and the center manifold theorem to examine the nature of the Hopf bifurca-tion. It is clearly observed that competition among predators can drive the system to a stable from an unstable state. Also the infection and competition among predator population enhance the availability of prey for harvesting when their values are high. Finally, some numerical simu-lations are carried out to illustrate the analytical results

    Global Property in a Delayed Periodic Predator-Prey Model with Stage-Structure in Prey and Density-Independence in Predator

    Get PDF
    We study the global property in a delayed periodic predator-prey model with stage-structure in prey and density-independence in predator. The sufficient conditions on the ultimate boundedness of all positive solutions are obtained, and the sufficient conditions of the integrable form for the permanence and extinction are further established, respectively. Some well-known results on the predator density-dependency are improved and extended to the predator density-independent cases. The theoretical results are confirmed by the special examples and the numerical simulations
    • …
    corecore