93 research outputs found

    Ten Conferences WORDS: Open Problems and Conjectures

    Full text link
    In connection to the development of the field of Combinatorics on Words, we present a list of open problems and conjectures that were stated during the ten last meetings WORDS. We wish to continually update the present document by adding informations concerning advances in problems solving

    Conferences WORDS, years 1997-2017: Open Problems and Conjectures

    Get PDF
    International audienceIn connection with the development of the field of Combinatorics on Words, we present a list of open problems and conjectures which were stated in the context of the eleven international meetings WORDS, which held from 1997 to 2017

    Inverse problems of symbolic dynamics

    Full text link
    This paper reviews some results regarding symbolic dynamics, correspondence between languages of dynamical systems and combinatorics. Sturmian sequences provide a pattern for investigation of one-dimensional systems, in particular interval exchange transformation. Rauzy graphs language can express many important combinatorial and some dynamical properties. In this case combinatorial properties are considered as being generated by substitutional system, and dynamical properties are considered as criteria of superword being generated by interval exchange transformation. As a consequence, one can get a morphic word appearing in interval exchange transformation such that frequencies of letters are algebraic numbers of an arbitrary degree. Concerning multydimensional systems, our main result is the following. Let P(n) be a polynomial, having an irrational coefficient of the highest degree. A word ww (w=(w_n), n\in \nit) consists of a sequence of first binary numbers of {P(n)}\{P(n)\} i.e. wn=[2{P(n)}]w_n=[2\{P(n)\}]. Denote the number of different subwords of ww of length kk by T(k)T(k) . \medskip {\bf Theorem.} {\it There exists a polynomial Q(k)Q(k), depending only on the power of the polynomial PP, such that T(k)=Q(k)T(k)=Q(k) for sufficiently great kk.

    Relations on words

    Full text link
    In the first part of this survey, we present classical notions arising in combinatorics on words: growth function of a language, complexity function of an infinite word, pattern avoidance, periodicity and uniform recurrence. Our presentation tries to set up a unified framework with respect to a given binary relation. In the second part, we mainly focus on abelian equivalence, kk-abelian equivalence, combinatorial coefficients and associated relations, Parikh matrices and MM-equivalence. In particular, some new refinements of abelian equivalence are introduced

    Combinatorics on Words 10th International Conference

    Get PDF
    This volume contains the Local Proceedings of the Tenth International Conference on WORDS, that took place at the Kiel University, Germany, from the 14th to the 17th September 2015. WORDS is the main conference series devoted to the mathematical theory of words, and it takes place every two years. The first conference in the series was organised in 1997 in Rouen, France, with the following editions taking place in Rouen, Palermo,Turku, Montreal, Marseille, Salerno, Prague, and Turku. The main object in the scope of the conference, words, are finite or infinite sequences of symbols over a finite alphabet. They appear as natural and basic mathematical model in many areas, theoretical or applicative. Accordingly, the WORDS conference is open to both theoretical contributions related to combinatorial, algebraic, and algorithmic aspects of words, as well as to contributions presenting application of the theory of words, for instance, in other fields of computer science, inguistics, biology and bioinformatics, or physics. For the second time in the history of WORDS, after the 2013 edition, a refereed proceedings volume was published in Springer’s Lecture Notes in Computer Science series. In addition, this local proceedings volume was published in the Kiel Computer Science Series of the Kiel University. Being a conference at the border between theoretical computer science and mathematics, WORDS tries to capture in its two proceedings volumes the characteristics of the conferences from both these worlds. While the Lecture Notes in Computer Science volume was dedicated to formal contributions, this local proceedings volume allows, in the spirit of mathematics conferences, the publication of several contributions informing on current research and work in progress in areas closely connected to the core topics of WORDS. All the papers, the ones published in the Lecture Notes in Computer Science proceedings volume or the ones from this volume, were refereed to high standards by the members of the Program Committee. Following the conference, a special issue of the Theoretical Computer Science journal will be edited, containing extended versions of papers from both proceedings volumes. In total, the conference hosted 18 contributed talks. The papers on which 14 of these talks were based, were published in th LNCS volume; the other 4 are published in this volume. In addition to the contributed talks, the conference program included six invited talks given by leading experts in the areas covered by the WORDS conference: Jörg Endrullis (Amsterdam), Markus Lohrey (Siegen), Jean Néraud (Rouen), Dominique Perrin (Paris), Michaël Rao (Lyon), Thomas Stoll (Nancy). WORDS 2015 was the tenth conference in the series, so we were extremely happy to welcome, as invited speaker at this anniversary edition, Jean Néraud, one of the initiators of the series and the main organiser of the first two editions of this conference. We thank all the invited speakers and all the authors of submitted papers for their contributions to the the success of the conference. We are grateful to the members of the Program Committee for their work that lead to the selection of the contributed talks, and, implicitly, of the papers published in this volume. They were assisted in their task by a series of external referees, gratefully acknowledged below. The submission and reviewing process used the Easychair system; we thank Andrej Voronkov for this system which facilitated the work of the Programme Committee and the editors considerably. We grateful thank Gheorghe Iosif for designing the logo, poster, and banner of WORDS 2015; the logo of the conference can be seen on the front cover of this book. We also thank the editors of the Kiel Computer Science Series, especially Lasse Kliemann, for their support in editing this volume. Finally, we thank the Organising Committee of WORDS 2015 for ensuring the smooth run of the conference

    Combinatorics on Words. New Aspects on Avoidability, Defect Effect, Equations and Palindromes

    Get PDF
    In this thesis we examine four well-known and traditional concepts of combinatorics on words. However the contexts in which these topics are treated are not the traditional ones. More precisely, the question of avoidability is asked, for example, in terms of k-abelian squares. Two words are said to be k-abelian equivalent if they have the same number of occurrences of each factor up to length k. Consequently, k-abelian equivalence can be seen as a sharpening of abelian equivalence. This fairly new concept is discussed broader than the other topics of this thesis. The second main subject concerns the defect property. The defect theorem is a well-known result for words. We will analyze the property, for example, among the sets of 2-dimensional words, i.e., polyominoes composed of labelled unit squares. From the defect effect we move to equations. We will use a special way to define a product operation for words and then solve a few basic equations over constructed partial semigroup. We will also consider the satisfiability question and the compactness property with respect to this kind of equations. The final topic of the thesis deals with palindromes. Some finite words, including all binary words, are uniquely determined up to word isomorphism by the position and length of some of its palindromic factors. The famous Thue-Morse word has the property that for each positive integer n, there exists a factor which cannot be generated by fewer than n palindromes. We prove that in general, every non ultimately periodic word contains a factor which cannot be generated by fewer than 3 palindromes, and we obtain a classification of those binary words each of whose factors are generated by at most 3 palindromes. Surprisingly these words are related to another much studied set of words, Sturmian words.Siirretty Doriast

    Avoiding Abelian powers in binary words with bounded Abelian complexity

    Full text link
    The notion of Abelian complexity of infinite words was recently used by the three last authors to investigate various Abelian properties of words. In particular, using van der Waerden's theorem, they proved that if a word avoids Abelian kk-powers for some integer kk, then its Abelian complexity is unbounded. This suggests the following question: How frequently do Abelian kk-powers occur in a word having bounded Abelian complexity? In particular, does every uniformly recurrent word having bounded Abelian complexity begin in an Abelian kk-power? While this is true for various classes of uniformly recurrent words, including for example the class of all Sturmian words, in this paper we show the existence of uniformly recurrent binary words, having bounded Abelian complexity, which admit an infinite number of suffixes which do not begin in an Abelian square. We also show that the shift orbit closure of any infinite binary overlap-free word contains a word which avoids Abelian cubes in the beginning. We also consider the effect of morphisms on Abelian complexity and show that the morphic image of a word having bounded Abelian complexity has bounded Abelian complexity. Finally, we give an open problem on avoidability of Abelian squares in infinite binary words and show that it is equivalent to a well-known open problem of Pirillo-Varricchio and Halbeisen-Hungerb\"uhler.Comment: 16 pages, submitte

    Overlap-Free Words and Generalizations

    Get PDF
    The study of combinatorics on words dates back at least to the beginning of the 20th century and the work of Axel Thue. Thue was the first to give an example of an infinite word over a three letter alphabet that contains no squares (identical adjacent blocks) xx. This result was eventually used to solve some longstanding open problems in algebra and has remarkable connections to other areas of mathematics and computer science as well. This thesis will consider several different generalizations of Thue's work. In particular we shall study the properties of infinite words avoiding various types of repetitions. In Chapter 1 we introduce the theory of combinatorics on words. We present the basic definitions and give an historical survey of the area. In Chapter 2 we consider the work of Thue in more detail. We present various well-known properties of the Thue-Morse word and give some generalizations. We examine Fife's characterization of the infinite overlap-free words and give a simpler proof of this result. We also present some applications to transcendental number theory, generalizing a classical result of Mahler. In Chapter 3 we generalize a result of Seebold by showing that the only infinite 7/3-power-free binary words that can be obtained by iterating a morphism are the Thue-Morse word and its complement. In Chapter 4 we continue our study of overlap-free and 7/3-power-free words. We discuss the squares that can appear as subwords of these words. We also show that it is possible to construct infinite 7/3-power-free binary words containing infinitely many overlaps. In Chapter 5 we consider certain questions of language theory. In particular, we examine the context-freeness of the set of words containing overlaps. We show that over a three-letter alphabet, this set is not context-free, and over a two-letter alphabet, we show that this set cannot be unambiguously context-free. In Chapter 6 we construct infinite words over a four-letter alphabet that avoid squares in any arithmetic progression of odd difference. Our constructions are based on properties of the paperfolding words. We use these infinite words to construct non-repetitive tilings of the integer lattice. In Chapter 7 we consider approximate squares rather than squares. We give constructions of infinite words that avoid such approximate squares. In Chapter 8 we conclude the work and present some open problems

    Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions.

    Get PDF
    We investigate one-dimensional discrete Schrödinger operators whose potentials are invariant under a substitution rule. The spectral properties of these operators can be obtained from the analysis of a dynamical system, called the trace map. We give a careful derivation of these maps in the general case and exhibit some specific properties. Under an additional, easily verifiable hypothesis concerning the structure of the trace map we present an analysis of their dynamical properties that allows us to prove that the spectrum of the underlying Schrödinger operator is singular and supported on a set of zero Lebesgue measure. A condition allowing to exclude point spectrum is also given. The application of our theorems is explained on a series of examples
    • …
    corecore