1,002 research outputs found

    Exponential synchronization for reaction-diffusion neural networks with mixed time-varying delays via periodically intermittent control

    Get PDF
    This paper deals with the exponential synchronization problem for reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance. By using stochastic analysis approaches and constructing a novel Lyapunov–Krasovskii functional, a periodically intermittent controller is first proposed to guarantee the exponential synchronization of reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance in terms of p-norm. The obtained synchronization results are easy to check and improve upon the existing ones. Particularly, the traditional assumptions on control width and time-varying delays are removed in this paper. This paper also presents two illustrative examples and uses simulated results of these examples to show the feasibility and effectiveness of the proposed scheme

    Nonlinear analysis of dynamical complex networks

    Get PDF
    Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences

    Synchronization of chaotic delayed systems via intermittent control and its adaptive strategy

    Get PDF
    In this paper the problem of synchronization for delayed chaotic systems is considered based on aperiodic intermittent control. First, delayed chaotic systems are proposed via aperiodic adaptive intermittent control. Next, to cut down the control gain, a new generalized intermittent control and its adaptive strategy is introduced. Then, by constructing a piecewise Lyapunov auxiliary function and making use of piecewise analysis technique, some effective and novel criteria are obtained to ensure the global synchronization of delayed chaotic systems by means of the designed control protocols. At the end, two examples with numerical simulations are provided to verify the effectiveness of the theoretical results proposed scheme

    Pinning Adaptive Synchronization of Delayed Coupled Dynamical Networks via Periodically Intermittent Control

    Get PDF
    This paper investigates the exponential synchronization problem of delayed coupled dynamical networks by using adaptive pinning periodically intermittent control. Based on the Lyapunov method, by designing adaptive feedback controller, some sufficient conditions are presented to ensure the exponential synchronization of coupled dynamical networks with delayed coupling. Furthermore, a numerical example is given to demonstrate the validity of the theoretical results

    Delay time modulation induced oscillating synchronization and intermittent anticipatory/lag and complete synchronizations in time-delay nonlinear dynamical systems

    Get PDF
    Existence of a new type of oscillating synchronization that oscillates between three different types of synchronizations (anticipatory, complete and lag synchronizations) is identified in unidirectionally coupled nonlinear time-delay systems having two different time-delays, that is feedback delay with a periodic delay time modulation and a constant coupling delay. Intermittent anticipatory, intermittent lag and complete synchronizations are shown to exist in the same system with identical delay time modulations in both the delays. The transition from anticipatory to complete synchronization and from complete to lag synchronization as a function of coupling delay with suitable stability condition is discussed. The intermittent anticipatory and lag synchronizations are characterized by the minimum of similarity functions and the intermittent behavior is characterized by a universal asymptotic −3/2-{3/2} power law distribution. It is also shown that the delay time carved out of the trajectories of the time-delay system with periodic delay time modulation cannot be estimated using conventional methods, thereby reducing the possibility of decoding the message by phase space reconstruction.Comment: accepted for publication in CHAOS, revised in response to referees comment

    Robust Exponential Stabilization of Stochastic Delay Interval Recurrent Neural Networks with Distributed Parameters and Markovian Jumping by Using Periodically Intermittent Control

    Get PDF
    We consider a class of stochastic delay recurrent neural networks with distributed parameters and Markovian jumping. It is assumed that the coefficients in these neural networks belong to the interval matrices. Several sufficient conditions ensuring robust exponential stabilization are derived by using periodically intermittent control and Lyapunov functional. The obtained results are very easy to verify and implement, and improve the existing results. Finally, an example with numerical simulations is given to illustrate the presented criteria
    • …
    corecore