27 research outputs found

    Characterization and Emulation of Low-Voltage Power Line Channels for Narrowband and Broadband Communication

    Get PDF
    The demand for smart grid and smart home applications has raised the recent interest in power line communication (PLC) technologies, and has driven a broad set of deep surveys in low-voltage (LV) power line channels. This book proposes a set of novel approaches, to characterize and to emulate LV power line channels in the frequency range from0.15to 10 MHz, which closes gaps between the traditional narrowband (up to 500 kHz) and broadband (above1.8 MHz) ranges

    Characterization and Emulation of Low-Voltage Power Line Channels for Narrowband and Broadband Communication

    Get PDF
    The demand for smart grid and smart home applications has raised the recent interest in power line communication (PLC) technologies, and has driven a broad set of deep surveys in low-voltage (LV) power line channels. This book proposes a set of novel approaches, to characterize and to emulate LV power line channels in the frequency range from0.15to 10 MHz, which closes gaps between the traditional narrowband (up to 500 kHz) and broadband (above1.8 MHz) ranges

    On-Chip Analog Circuit Design Using Built-In Self-Test and an Integrated Multi-Dimensional Optimization Platform

    Get PDF
    Nowadays, the rapid development of system-on-chip (SoC) market introduces tremendous complexity into the integrated circuit (IC) design. Meanwhile, the IC fabrication process is scaling down to allow higher density of integration but makes the chips more sensitive to the process-voltage-temperature (PVT) variations. A successful IC product not only imposes great pressure on the IC designers, who have to handle wider variations and enforce more design margins, but also challenges the test procedure, leading to more check points and longer test time. To relax the designers’ burden and reduce the cost of testing, it is valuable to make the IC chips able to test and tune itself to some extent. In this dissertation, a fully integrated in-situ design validation and optimization (VO) hardware for analog circuits is proposed. It implements in-situ built-in self-test (BIST) techniques for analog circuits. Based on the data collected from BIST, the error between the measured and the desired performance of the target circuit is evaluated using a cost function. A digital multi-dimensional optimization engine is implemented to adaptively adjust the analog circuit parameters, seeking the minimum value of the cost function and achieving the desired performance. To verify this concept, study cases of a 2nd/4th active-RC band-pass filter (BPF) and a 2nd order Gm-C BPF, as well as all BIST and optimization blocks, are adopted on-chip. Apart from the VO system, several improved BIST techniques are also proposed in this dissertation. A single-tone sinusoidal waveform generator based on a finite-impulse-response (FIR) architecture, which utilizes an optimization algorithm to enhance its spur free dynamic range (SFDR), is proposed. It achieves an SFDR of 59 to 70 dBc from 150 to 850 MHz after the optimization procedure. A low-distortion current-steering two-tone sinusoidal signal synthesizer based on a mixing-FIR architecture is also proposed. The two-tone synthesizer extends the FIR architecture to two stages and implements an up-conversion mixer to generate the two tones, achieving better than -68 dBc IM3 below 480 MHz LO frequency without calibration. Moreover, an on-chip RF receiver linearity BIST methodology for continuous and discrete-time hybrid baseband chain is proposed. The proposed receiver chain implements a charge-domain FIR filter to notch the two excitation signals but expose the third order intermodulation (IM3) tones. It simplifies the linearity measurement procedure–using a power detector is enough to analyze the receiver’s linearity. Finally, a low cost fully digital built-in analog tester for linear-time-invariant (LTI) analog blocks is proposed. It adopts a time-to-digital converter (TDC) to measure the delays corresponded to a ramp excitation signal and is able to estimate the pole or zero locations of a low-pass LTI system

    Characterization and Emulation of Low-Voltage Power Line Channels for Narrowband and Broadband Communication

    Get PDF
    This thesis proposes a set of novel approaches to characterize and to emulate LV power line channels in the frequency range from 0.15 to 10MHz, which close gaps between the traditional narrowband (up to 500 kHz) and broadband (above 1.8MHz) ranges

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    7th EEEIC International Workshop on Environment and Electrical Engineering : Wroclaw - Cottbus, 5 - 11. May 2008

    Get PDF
    The proposed solution meets the latest trends in world power engineering and has the lowest ecological costs amongst the accessible power engineering solutions. It is also in accordance with the Polish power engineering law, which takes into account the recommendations of the European Economic Commission, the Second Sulphur Protocol and the Framework Convention of the United Nations (concerning the changes of climate)

    Advances in Filter Miniaturization and Design/Analysis of RF MEMS Tunable Filters

    Get PDF
    The main purpose of this dissertation was to address key issues in the design and analysis of RF/microwave filters for wireless applications. Since RF/microwave filters are one of the bulkiest parts of communication systems, their miniaturization is one of the most important technological challenges for the development of compact transceivers. In this work, novel miniaturization techniques were investigated for single-band, dual-band, ultra-wideband and tunable bandpass filters. In single-band filters, the use of cross-shaped fractals in half-mode substrate-integrated-waveguide bandpass filters resulted in a 37 percent size reduction. A compact bandpass filter that occupies an area of 0.315 mm2 is implemented in 90-nm CMOS technology for 20 GHz applications. For dual-band filters, using half-mode substrate-integrated-waveguides resulted in a filter that is six times smaller than its full-mode counterpart. For ultra-wideband filters, using slow-wave capacitively-loaded coplanar-waveguides resulted in a filter with improved stopband performance and frequency notch, while being 25 percent smaller in size. A major part of this work also dealt with the concept of 'hybrid' RF MEMS tunable filters where packaged, off-the-shelf RF MEMS switches were used to implement high-performance tunable filters using substrate-integrated-waveguide technology. These 'hybrid' filters are very easily fabricated compared to current state-of-the-art RF MEMS tunable filters because they do not require a clean-room facility. Both the full-mode and half-mode substrate-integrated waveguide tunable filters reported in this work have the best Q-factors (93 - 132 and 75 - 140, respectively) compared to any 'hybrid' RF MEMS tunable filter reported in current literature. Also, the half-mode substrate-integrated waveguide tunable filter is 2.5 times smaller than its full-mode counterpart while having similar performance. This dissertation also presented detailed analytical and simulation-based studies of nonlinear noise phenomena induced by Brownian motion in all-pole RF MEMS tunable filters. Two independent mathematical methods are proposed to calculate phase noise in RF MEMS tunable filters: (1) pole-perturbation approach, and (2) admittance-approach. These methods are compared to each other and to harmonic balance noise simulations using the CAD-model of the RF MEMS switch. To account for the switch nonlinearity in the mathematical methods, a nonlinear nodal analysis technique for tunable filters is also presented. In summary, it is shown that output signal-to-noise ratio degradation due to Brownian motion is maximum for low fractional bandwidth, high order and high quality factor RF MEMS tunable filters. Finally, a self-sustained microwave platform to detect the dielectric constant of organic liquids is presented in this dissertation. The main idea is to use a voltage- controlled negative-resistance oscillator whose frequency of oscillation varies according to the organic liquid under test. To make the system self-sustained, the oscillator is embedded in a frequency synthesizer system, which is then digitally interfaced to a computer for calculation of dielectric constant. Such a system has potential uses in a variety of applications in medicine, agriculture and pharmaceuticals
    corecore