284 research outputs found

    Fractional calculus modelling for unsteady unidirectional flow of incompressible fluids with time-dependent viscosity

    Full text link
    In this note we analyze a model for a unidirectional unsteady flow of a viscous incompressible fluid with time dependent viscosity. A possible way to take into account such behaviour is to introduce a memory formalism, including thus the time dependent viscosity by using an integro-differential term and therefore generalizing the classical equation of a Newtonian viscous fluid. A possible useful choice, in this framework, is to use a rheology based on stress/strain relation generalized by fractional calculus modelling. This is a model that can be used in applied problems, taking into account a power law time variability of the viscosity coefficient. We find analytic solutions of initial value problems in an unbounded and bounded domain. Furthermore, we discuss the explicit solution in a meaningful particular case

    A Numerical Study of Peristaltic Flow Generalized Maxwell Viscoelastic Fluids Through a Porous medium in an Inclined Channel

    Get PDF
    In this paper presents a study on Peristaltic of generalized Maxwell fluid fluids  through a porous medium  in an inclined channel with slip effect. The governing equation are simplified by assuming long wavelength  and low Reynolds number approximations. The numerical and approximate analytical solutions of the problem are obtained by a semi-numerical technique, namely the homotopy  perturbation method. The influence of the dominating physical parameters such as fractional Maxwell parameter, relaxation time, amplitude ratio, permeability parameter , Froude number, Reynolds number and inclination of channel on the flow characteristics are depicted graphically. Keywords : Peristaltic Transport, fractional generalized Maxwell, Slip effect, Porous Medium, Inclined a      symmetric channel, pimping ,trapping

    Magnetite Molybdenum Disulphide Nanofluid of Grade Two: A Generalized Model with Caputo-Fabrizio Derivative

    Get PDF
    Heat and mass transfer analysis in magnetite molybdenum disulphide nanofluid of grade two is studied. MoS2 powder with each particle of nanosize is dissolved in engine oil chosen as base fluid. A generalized form of grade-two model is considered with fractional order derivatives of Caputo and Fabrizio. The fluid over vertically oscillating plate is subjected to isothermal temperate and species concentration. The problem is modeled in terms of partial differential equations with sufficient initial conditions and boundary conditions. Fractional form of Laplace transform is used and exact solutions in closed form are determined for velocity field, temperature and concentration distributions. These solutions are then plotted for embedded parameters and discussed. Results for the physical quantities of interest (skin friction coefficient, Nusselt number and Sherwood number) are computed in tables. Results obtained in this work are compared with some published results from the open literature

    Unsteady Flows of a Generalized Fractional Burgers’ Fluid between Two Side Walls Perpendicular to a Plate

    Get PDF
    The unsteady flows of a generalized fractional Burgers’ fluid between two side walls perpendicular to a plate are studied for the case of Rayleigh-Stokes’ first and second problems. Exact solutions of the velocity fields are derived in terms of the generalized Mittag-Leffler function by using the double Fourier transform and discrete Laplace transform of sequential fractional derivatives. The solution for Rayleigh-Stokes’ first problem is represented as the sum of the Newtonian solutions and the non-Newtonian contributions, based on which the solution for Rayleigh-Stokes’ second problem is constructed by the Duhamel’s principle. The solutions for generalized second-grade fluid, generalized Maxwell fluid, and generalized Oldroyd-B fluid performing the same motions appear as limiting cases of the present solutions. Furthermore, the influences of fractional parameters and material parameters on the unsteady flows are discussed by graphical illustrations

    Analytical solutions for wall slip effects on magnetohydrodynamic oscillatory rotating plate and channel flows in porous media using a fractional burgers viscoelastic model

    Get PDF
    A theoretical analysis of magnetohydrodynamic (MHD) incompressible flows of Burger's fluid through a porous medium in a rotating frame of reference is presented. The constitutive model of a Burger's fluid is used based on a fractional calculus formulation. Hydrodynamic slip at the wall (plate) is incorporated and a fractional generalized Darcy model deployed to simulate porous medium drag force effects. Three different cases are considered- namely, flow induced by a general periodic oscillation at a rigid plate, periodic flow in a parallel plate channel and finally Poiseuille flow. In all cases the plate (s) boundary (ies) are electrically-non-conducting and small magnetic Reynolds is assumed, negating magnetic induction effects. The well-posed boundary value problems associated with each case are solved via Fourier transforms. Comparisons are made between the results derived with and without slip conditions. 4 special cases are retrieved from the general fractional Burgers model, viz Newtonian fluid, general Maxwell viscoelastic fluid, generalized Oldroyd-B fluid and the conventional Burger’s viscoelastic model. Extensive interpretation of graphical plots is included. We study explicitly the influence on wall slip on primary and secondary velocity evolution. The model is relevant to MHD rotating energy generators employing rheological working fluids

    Peristaltic transport of viscoelastic bio-fluids with fractional derivative models

    Get PDF
    Peristaltic flow of viscoelastic fluid through a uniform channel is considered under the assumptions of long wavelength and low Reynolds number. The fractional Oldroyd-B constitutive viscoelastic law is employed. Based on models for peristaltic viscoelastic flows given in a series of papers by Tripathi et al. (e.g. Appl Math Comput. 215 (2010) 3645–3654; Math Biosci. 233 (2011) 90–97) we present a detailed analytical and numerical study of the evolution in time of the pressure gradient across one wavelength. An analytical expression for the pressure gradient is obtained in terms of Mittag-Leffler functions and its behavior is analyzed. For numerical computation the fractional Adams method is used. The influence of the different material parameters is discussed, as well as constraints on the parameters under which the model is physically meaningful

    Viscoelasticity

    Get PDF
    This book contains a wealth of useful information on current research on viscoelasticity. By covering a broad variety of rheology, non-Newtonian fluid mechanics and viscoelasticity-related topics, this book is addressed to a wide spectrum of academic and applied researchers and scientists but it could also prove useful to industry specialists. The subject areas include, theory, simulations, biological materials and food products among others

    Unsteady newtonian and non-newtonian fluid flows in the circular tube in the presence of magnetic field using caputo-fabrizio derivative

    Get PDF
    This thesis investigates analytically the magnetohydrodynamics (MHD) transport of Newtonian and non-Newtonian fluids flows inside a circular channel. The flow was subjected to an external electric field for the Newtonian model and a uniform transverse magnetic field for all models. Pressure gradient or oscillating boundary condition was employed to drive the flow. In the first model Newtonian fluid flow without stenotic porous tube was considered and in the second model stenotic porous tube was taken into account. The third model is concerned with the temperature distribution and Nusselt number. The fourth model investigates the non-Newtonian second grade fluid velocity affected by the heat distribution and oscillating walls. Last model study the velocity, acceleration and flow rate of third grade non-Newtonian fluid flow in the porous tube. The non-linear governing equations were solved using the Caputo-Fabrizio time fractional order model without singular kernel. The analytical solutions were obtained using Laplace transform, finite Hankel transforms and Robotnov and Hartley’s functions. The velocity profiles obtained from various physiological parameters were graphically analyzed using Mathematica. Results were compared with those reported in the previous studies and good agreement were found. Fractional derivative and electric field are in direct relation whereas magnetic field and porosity are in inverse relation with respect to the velocity profile in Newtonian flow case. Meanwhile, fractional derivative and Womersely number are in direct relation whereas magnetic field, third grade parameter, frequency ratio and porosity are in inverse relation in third grade non-Newtonian flow case. In the case of second grade fluid, Prandtl number, fractional derivative and Grashof number are in direct relation whereas second grade parameter and magnetic field are in inverse relation. The fluid flow model can be regulated by applying a sufficiently strong magnetic field

    Slip Effects on Fractional Viscoelastic Fluids

    Get PDF
    Unsteady flow of an incompressible Maxwell fluid with fractional derivative induced by a sudden moved plate has been studied, where the no-slip assumption between the wall and the fluid is no longer valid. The solutions obtained for the velocity field and shear stress, written in terms of Wright generalized hypergeometric functions Ψ, by using discrete Laplace transform of the sequential fractional derivatives, satisfy all imposed initial and boundary conditions. The no-slip contributions, that appeared in the general solutions, as expected, tend to zero when slip parameter is →0. Furthermore, the solutions for ordinary Maxwell and Newtonian fluids, performing the same motion, are obtained as special cases of general solutions. The solutions for fractional and ordinary Maxwell fluid for no-slip condition also obtained as limiting cases, and they are equivalent to the previously known results. Finally, the influence of the material, slip, and the fractional parameters on the fluid motion as well as a comparison among fractional Maxwell, ordinary Maxwell, and Newtonian fluids is also discussed by graphical illustrations
    • …
    corecore