3,489 research outputs found

    The Monge-Ampere equation: various forms and numerical methods

    Full text link
    We present three novel forms of the Monge-Ampere equation, which is used, e.g., in image processing and in reconstruction of mass transportation in the primordial Universe. The central role in this paper is played by our Fourier integral form, for which we establish positivity and sharp bound properties of the kernels. This is the basis for the development of a new method for solving numerically the space-periodic Monge-Ampere problem in an odd-dimensional space. Convergence is illustrated for a test problem of cosmological type, in which a Gaussian distribution of matter is assumed in each localised object, and the right-hand side of the Monge-Ampere equation is a sum of such distributions.Comment: 24 pages, 2 tables, 5 figures, 32 references. Submitted to J. Computational Physics. Times of runs added, multiple improvements of the manuscript implemented

    Ground states of nonlocal scalar field equations with Trudinger-Moser critical nonlinearity

    Full text link
    We investigate the existence of ground state solutions for a class of nonlinear scalar field equations defined on whole real line, involving a fractional Laplacian and nonlinearities with Trudinger-Moser critical growth. We handle the lack of compactness of the associated energy functional due to the unboundedness of the domain and the presence of a limiting case embedding.Comment: 13 page

    Entropic Wasserstein Gradient Flows

    Full text link
    This article details a novel numerical scheme to approximate gradient flows for optimal transport (i.e. Wasserstein) metrics. These flows have proved useful to tackle theoretically and numerically non-linear diffusion equations that model for instance porous media or crowd evolutions. These gradient flows define a suitable notion of weak solutions for these evolutions and they can be approximated in a stable way using discrete flows. These discrete flows are implicit Euler time stepping according to the Wasserstein metric. A bottleneck of these approaches is the high computational load induced by the resolution of each step. Indeed, this corresponds to the resolution of a convex optimization problem involving a Wasserstein distance to the previous iterate. Following several recent works on the approximation of Wasserstein distances, we consider a discrete flow induced by an entropic regularization of the transportation coupling. This entropic regularization allows one to trade the initial Wasserstein fidelity term for a Kulback-Leibler divergence, which is easier to deal with numerically. We show how KL proximal schemes, and in particular Dykstra's algorithm, can be used to compute each step of the regularized flow. The resulting algorithm is both fast, parallelizable and versatile, because it only requires multiplications by a Gibbs kernel. On Euclidean domains discretized on an uniform grid, this corresponds to a linear filtering (for instance a Gaussian filtering when cc is the squared Euclidean distance) which can be computed in nearly linear time. On more general domains, such as (possibly non-convex) shapes or on manifolds discretized by a triangular mesh, following a recently proposed numerical scheme for optimal transport, this Gibbs kernel multiplication is approximated by a short-time heat diffusion
    • …
    corecore