20,301 research outputs found

    Multi-site breathers in Klein-Gordon lattices: stability, resonances, and bifurcations

    Full text link
    We prove the most general theorem about spectral stability of multi-site breathers in the discrete Klein-Gordon equation with a small coupling constant. In the anti-continuum limit, multi-site breathers represent excited oscillations at different sites of the lattice separated by a number of "holes" (sites at rest). The theorem describes how the stability or instability of a multi-site breather depends on the phase difference and distance between the excited oscillators. Previously, only multi-site breathers with adjacent excited sites were considered within the first-order perturbation theory. We show that the stability of multi-site breathers with one-site holes change for large-amplitude oscillations in soft nonlinear potentials. We also discover and study a symmetry-breaking (pitchfork) bifurcation of one-site and multi-site breathers in soft quartic potentials near the points of 1:3 resonance.Comment: 34 pages, 12 figure

    Localization and Coherence in Nonintegrable Systems

    Full text link
    We study the irreversible dynamics of nonlinear, nonintegrable Hamiltonian oscillator chains approaching their statistical asympotic states. In systems constrained by more than one conserved quantity, the partitioning of the conserved quantities leads naturally to localized and coherent structures. If the phase space is compact, the final equilibrium state is governed by entropy maximization and the final coherent structures are stable lumps. In systems where the phase space is not compact, the coherent structures can be collapses represented in phase space by a heteroclinic connection to infinity.Comment: 41 pages, 15 figure

    Nonlinear waves in Newton's cradle and the discrete p-Schroedinger equation

    Full text link
    We study nonlinear waves in Newton's cradle, a classical mechanical system consisting of a chain of beads attached to linear pendula and interacting nonlinearly via Hertz's contact forces. We formally derive a spatially discrete modulation equation, for small amplitude nonlinear waves consisting of slow modulations of time-periodic linear oscillations. The fully-nonlinear and unilateral interactions between beads yield a nonstandard modulation equation that we call the discrete p-Schroedinger (DpS) equation. It consists of a spatial discretization of a generalized Schroedinger equation with p-Laplacian, with fractional p>2 depending on the exponent of Hertz's contact force. We show that the DpS equation admits explicit periodic travelling wave solutions, and numerically find a plethora of standing wave solutions given by the orbits of a discrete map, in particular spatially localized breather solutions. Using a modified Lyapunov-Schmidt technique, we prove the existence of exact periodic travelling waves in the chain of beads, close to the small amplitude modulated waves given by the DpS equation. Using numerical simulations, we show that the DpS equation captures several other important features of the dynamics in the weakly nonlinear regime, namely modulational instabilities, the existence of static and travelling breathers, and repulsive or attractive interactions of these localized structures

    On the detuned 2:4 resonance

    Get PDF
    We consider families of Hamiltonian systems in two degrees of freedom with an equilibrium in 1:2 resonance. Under detuning, this "Fermi resonance" typically leads to normal modes losing their stability through period-doubling bifurcations. For cubic potentials this concerns the short axial orbits and in galactic dynamics the resulting stable periodic orbits are called "banana" orbits. Galactic potentials are symmetric with respect to the co-ordinate planes whence the potential -- and the normal form -- both have no cubic terms. This Z2×Z2\mathbb{Z}_2 \times \mathbb{Z}_2-symmetry turns the 1:2 resonance into a higher order resonance and one therefore also speaks of the 2:4 resonance. In this paper we study the 2:4 resonance in its own right, not restricted to natural Hamiltonian systems where H=T+VH = T + V would consist of kinetic and (positional) potential energy. The short axial orbit then turns out to be dynamically stable everywhere except at a simultaneous bifurcation of banana and "anti-banana" orbits, while it is now the long axial orbit that loses and regains stability through two successive period-doubling bifurcations.Comment: 31 pages, 7 figures: On line first on Journal of Nonlinear Science (2020
    • …
    corecore