18,383 research outputs found

    Mean-field equations for stochastic firing-rate neural fields with delays: Derivation and noise-induced transitions

    Full text link
    In this manuscript we analyze the collective behavior of mean-field limits of large-scale, spatially extended stochastic neuronal networks with delays. Rigorously, the asymptotic regime of such systems is characterized by a very intricate stochastic delayed integro-differential McKean-Vlasov equation that remain impenetrable, leaving the stochastic collective dynamics of such networks poorly understood. In order to study these macroscopic dynamics, we analyze networks of firing-rate neurons, i.e. with linear intrinsic dynamics and sigmoidal interactions. In that case, we prove that the solution of the mean-field equation is Gaussian, hence characterized by its two first moments, and that these two quantities satisfy a set of coupled delayed integro-differential equations. These equations are similar to usual neural field equations, and incorporate noise levels as a parameter, allowing analysis of noise-induced transitions. We identify through bifurcation analysis several qualitative transitions due to noise in the mean-field limit. In particular, stabilization of spatially homogeneous solutions, synchronized oscillations, bumps, chaotic dynamics, wave or bump splitting are exhibited and arise from static or dynamic Turing-Hopf bifurcations. These surprising phenomena allow further exploring the role of noise in the nervous system.Comment: Updated to the latest version published, and clarified the dependence in space of Brownian motion

    Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    Full text link
    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatio-temporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatio-temporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast alpha-function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with alpha-function is reduced into the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.

    Desynchronization in diluted neural networks

    Full text link
    The dynamical behaviour of a weakly diluted fully-inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochastic-like regime is observed. In the weak-coupling phase, a periodic dynamics is rapidly approached, with all neurons firing with the same rate and mutually phase-locked. The strong-coupling phase is characterized by an irregular pattern, even though the maximum Lyapunov exponent is negative. The paradox is solved by drawing an analogy with the phenomenon of ``stable chaos'', i.e. by observing that the stochastic-like behaviour is "limited" to a an exponentially long (with the system size) transient. Remarkably, the transient dynamics turns out to be stationary.Comment: 11 pages, 13 figures, submitted to Phys. Rev.

    Hopf Bifurcation and Chaos in Tabu Learning Neuron Models

    Full text link
    In this paper, we consider the nonlinear dynamical behaviors of some tabu leaning neuron models. We first consider a tabu learning single neuron model. By choosing the memory decay rate as a bifurcation parameter, we prove that Hopf bifurcation occurs in the neuron. The stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation are determined by applying the normal form theory. We give a numerical example to verify the theoretical analysis. Then, we demonstrate the chaotic behavior in such a neuron with sinusoidal external input, via computer simulations. Finally, we study the chaotic behaviors in tabu learning two-neuron models, with linear and quadratic proximity functions respectively.Comment: 14 pages, 13 figures, Accepted by International Journal of Bifurcation and Chao

    Emergence of Synchronous Oscillations in Neural Networks Excited by Noise

    Full text link
    The presence of noise in non linear dynamical systems can play a constructive role, increasing the degree of order and coherence or evoking improvements in the performance of the system. An example of this positive influence in a biological system is the impulse transmission in neurons and the synchronization of a neural network. Integrating numerically the Fokker-Planck equation we show a self-induced synchronized oscillation. Such an oscillatory state appears in a neural network coupled with a feedback term, when this system is excited by noise and the noise strength is within a certain range.Comment: 12 pages, 18 figure

    Limits and dynamics of stochastic neuronal networks with random heterogeneous delays

    Full text link
    Realistic networks display heterogeneous transmission delays. We analyze here the limits of large stochastic multi-populations networks with stochastic coupling and random interconnection delays. We show that depending on the nature of the delays distributions, a quenched or averaged propagation of chaos takes place in these networks, and that the network equations converge towards a delayed McKean-Vlasov equation with distributed delays. Our approach is mostly fitted to neuroscience applications. We instantiate in particular a classical neuronal model, the Wilson and Cowan system, and show that the obtained limit equations have Gaussian solutions whose mean and standard deviation satisfy a closed set of coupled delay differential equations in which the distribution of delays and the noise levels appear as parameters. This allows to uncover precisely the effects of noise, delays and coupling on the dynamics of such heterogeneous networks, in particular their role in the emergence of synchronized oscillations. We show in several examples that not only the averaged delay, but also the dispersion, govern the dynamics of such networks.Comment: Corrected misprint (useless stopping time) in proof of Lemma 1 and clarified a regularity hypothesis (remark 1

    Phase-locking in weakly heterogeneous neuronal networks

    Full text link
    We examine analytically the existence and stability of phase-locked states in a weakly heterogeneous neuronal network. We consider a model of N neurons with all-to-all synaptic coupling where the heterogeneity is in the firing frequency or intrinsic drive of the neurons. We consider both inhibitory and excitatory coupling. We derive the conditions under which stable phase-locking is possible. In homogeneous networks, many different periodic phase-locked states are possible. Their stability depends on the dynamics of the neuron and the coupling. For weak heterogeneity, the phase-locked states are perturbed from the homogeneous states and can remain stable if their homogeneous conterparts are stable. For enough heterogeneity, phase-locked solutions either lose stability or are destroyed completely. We analyze the possible states the network can take when phase-locking is broken.Comment: RevTex, 27 pages, 3 figure

    Collective Almost Synchronization in Complex Networks

    Get PDF
    This work introduces the phenomenon of Collective Almost Synchronization (CAS), which describes a universal way of how patterns can appear in complex networks even for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterized by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behavior of each node is not correlated to the behaviors of the others. Contrary to this common notion, we show that various well known weaker forms of synchronization (almost, time-lag, phase synchronization, and generalized synchronization) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it.Comment: 3 figure
    • …
    corecore