11,033 research outputs found

    Energy-Efficient Scheduling for Homogeneous Multiprocessor Systems

    Get PDF
    We present a number of novel algorithms, based on mathematical optimization formulations, in order to solve a homogeneous multiprocessor scheduling problem, while minimizing the total energy consumption. In particular, for a system with a discrete speed set, we propose solving a tractable linear program. Our formulations are based on a fluid model and a global scheduling scheme, i.e. tasks are allowed to migrate between processors. The new methods are compared with three global energy/feasibility optimal workload allocation formulations. Simulation results illustrate that our methods achieve both feasibility and energy optimality and outperform existing methods for constrained deadline tasksets. Specifically, the results provided by our algorithm can achieve up to an 80% saving compared to an algorithm without a frequency scaling scheme and up to 70% saving compared to a constant frequency scaling scheme for some simulated tasksets. Another benefit is that our algorithms can solve the scheduling problem in one step instead of using a recursive scheme. Moreover, our formulations can solve a more general class of scheduling problems, i.e. any periodic real-time taskset with arbitrary deadline. Lastly, our algorithms can be applied to both online and offline scheduling schemes.Comment: Corrected typos: definition of J_i in Section 2.1; (3b)-(3c); definition of \Phi_A and \Phi_D in paragraph after (6b). Previous equations were correct only for special case of p_i=d_

    Real-time disk scheduling in a mixed-media file system

    Get PDF
    This paper presents our real-time disk scheduler called the Delta L scheduler, which optimizes unscheduled best-effort disk requests by giving priority to best-effort disk requests while meeting real-time request deadlines. Our scheduler tries to execute real-time disk requests as much as possible in the background. Only when real-time request deadlines are endangered, our scheduler gives priority to real-time disk requests. The Delta L disk scheduler is part of our mixed-media file system called Clockwise. An essential part of our work is extensive and detailed raw disk performance measurements. The Delta L disk scheduler for its real-time schedulability analysis and to decide whether scheduling a best-effort request before a real-time request violates real-time constraints uses these raw performance measurements. Further, a Clockwise off-line simulator uses the raw performance measurements where a number of different disk schedulers are compared. We compare the Delta L scheduler with a prioritizing Latest Start Time (LST) scheduler and non-prioritizing EDF scheduler. The Delta L scheduler is comparable to LST in achieving low latencies for best-effort requests under light to moderate real-time loads and better in achieving low latencies for best-effort requests for extreme real-time loads. The simulator is calibrated to an actual Clockwise. Clockwise runs on a 200MHz Pentium-Pro based PC with PCI bus, multiple SCSI controllers and disks on Linux 2.2.x and the Nemesis kernel. Clockwise performance is dictated by the hardware: all available bandwidth can be committed to real-time streams, provided hardware overloads do not occur

    PERTS: A Prototyping Environment for Real-Time Systems

    Get PDF
    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems

    Utilization-Based Scheduling of Flexible Mixed-Criticality Real-Time Tasks

    Get PDF
    Mixed-criticality models are an emerging paradigm for the design of real-time systems because of their significantly improved resource efficiency. However, formal mixed-criticality models have traditionally been characterized by two impractical assumptions: once \textit{any} high-criticality task overruns, \textit{all} low-criticality tasks are suspended and \textit{all other} high-criticality tasks are assumed to exhibit high-criticality behaviors at the same time. In this paper, we propose a more realistic mixed-criticality model, called the flexible mixed-criticality (FMC) model, in which these two issues are addressed in a combined manner. In this new model, only the overrun task itself is assumed to exhibit high-criticality behavior, while other high-criticality tasks remain in the same mode as before. The guaranteed service levels of low-criticality tasks are gracefully degraded with the overruns of high-criticality tasks. We derive a utilization-based technique to analyze the schedulability of this new mixed-criticality model under EDF-VD scheduling. During runtime, the proposed test condition serves an important criterion for dynamic service level tuning, by means of which the maximum available execution budget for low-criticality tasks can be directly determined with minimal overhead while guaranteeing mixed-criticality schedulability. Experiments demonstrate the effectiveness of the FMC scheme compared with state-of-the-art techniques.Comment: This paper has been submitted to IEEE Transaction on Computers (TC) on Sept-09th-201

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip
    • …
    corecore