2,408 research outputs found

    Advancements of MultiRate Signal processing for Wireless Communication Networks: Current State Of the Art

    Get PDF
    With the hasty growth of internet contact and voice and information centric communications, many contact technologies have been urbanized to meet the stringent insist of high speed information transmission and viaduct the wide bandwidth gap among ever-increasing high-data-rate core system and bandwidth-hungry end-user complex. To make efficient consumption of the limited bandwidth of obtainable access routes and cope with the difficult channel environment, several standards have been projected for a variety of broadband access scheme over different access situation (twisted pairs, coaxial cables, optical fibers, and unchanging or mobile wireless admittance). These access situations may create dissimilar channel impairments and utter unique sets of signal dispensation algorithms and techniques to combat precise impairments. In the intended and implementation sphere of those systems, many research issues arise. In this paper we present advancements of multi-rate indication processing methodologies that are aggravated by this design trend. The thesis covers the contemporary confirmation of the current literature on intrusion suppression using multi-rate indication in wireless communiquE9; networks

    Discrete multitone modulation with principal component filter banks

    Get PDF
    Discrete multitone (DMT) modulation is an attractive method for communication over a nonflat channel with possibly colored noise. The uniform discrete Fourier transform (DFT) filter bank and cosine modulated filter bank have in the past been used in this system because of low complexity. We show in this paper that principal component filter banks (PCFB) which are known to be optimal for data compression and denoising applications, are also optimal for a number of criteria in DMT modulation communication. For example, the PCFB of the effective channel noise power spectrum (noise psd weighted by the inverse of the channel gain) is optimal for DMT modulation in the sense of maximizing bit rate for fixed power and error probabilities. We also establish an optimality property of the PCFB when scalar prefilters and postfilters are used around the channel. The difference between the PCFB and a traditional filter bank such as the brickwall filter bank or DFT filter bank is significant for effective power spectra which depart considerably from monotonicity. The twisted pair channel with its bridged taps, next and fext noises, and AM interference, therefore appears to be a good candidate for the application of a PCFB. This is demonstrated with the help of numerical results for the case of the ADSL channel

    Time-Interleaved Analog-to-Digital Converter (TIADC) Compensation Using Multichannel Filters

    Get PDF
    Published methods that employ a filter bank for compensating the timing and bandwidth mismatches of an M-channel time-interleaved analog-to-digital converter (TIADC) were developed based on the fact that each sub-ADC channel is a downsampled version of the analog input. The output of each sub-ADC is filtered in such a way that, when all the filter outputs are summed, the aliasing components are minimized. If each channel of the filter bank has N coefficients, the optimization of the coefficients requires computing the inverse of an MN times MN matrix if the weighted least squares (WLS) technique is used as the optimization tool. In this paper, we present a multichannel filtering approach for TIADC mismatch compensation. We apply the generalized sampling theorem to directly estimate the ideal output of each sub-ADC using the outputs of all the sub-ADCs. If the WLS technique is used as the optimization tool, the dimension of the matrix to be inversed is N times N. For the same number of coefficients (and also the same spurious component performance given sufficient arithmetic precision), our technique is computationally less complex and more robust than the filter-bank approach. If mixed integer linear programming is used as the optimization tool to produce filters with coefficient values that are integer powers of two, our technique produces a saving in computing resources by a factor of approximately (100.2N(M- 1)/(M-1) in the TIADC filter design.published_or_final_versio

    Constrained pre-equalization accounting for multi-path fading emulated using large RC networks: applications to wireless and photonics communications

    Get PDF
    Multi-path propagation is modelled assuming a multi-layer RC network with randomly allocated resistors and capacitors to represent the transmission medium. Due to frequency-selective attenuation, the waveforms associated with each propagation path incur path-dependent distortion. A pre-equalization procedure that takes into account the capabilities of the transmission source as well as the transmission properties of the medium is developed. The problem is cast within a Mixed Integer Linear Programming optimization framework that uses the developed nominal RC network model, with the excitation waveform customized to optimize signal fidelity from the transmitter to the receiver. The objective is to match a Gaussian pulse input accounting for frequency regions where there would be pronounced fading. Simulations are carried out with different network realizations in order to evaluate the sensitivity of the solution with respect to changes in the transmission medium mimicking the multi-path propagation. The proposed approach is of relevance where equalization techniques are difficult to implement. Applications are discussed within the context of emergent communication modalities across the EM spectrum such as light percolation as well as emergent indoor communications assuming various modulation protocols or UWB schemes as well as within the context of space division multiplexing

    Optimal channel equalization for filterbank transceivers in presence of white noise

    Get PDF
    Filterbank transceivers are widely employed in data communication networks to cope with inter-symbol-interference (ISI) through the use of redundancies. This dissertation studies the design of the optimal channel equalizer for both time-invariant and time-varying channels, and wide-sense stationary (WSS) and possible non-stationary white noise processes. Channel equalization is investigated via the filterbank transceivers approach. All perfect reconstruction (PR) or zero-forcing (ZF) receiver filterbanks are parameterized in an affine form, which eliminate completely the ISI. The optimal channel equalizer is designed through minimization of the mean-squared-error (MSE) between the detected signals and the transmitted signals. Our main results show that the optimal channel equalizer has the form of state estimators, and is a modified Kalman filter. The results in this dissertation are applicable to discrete wavelet multitone (DWMT) systems, multirate transmultiplexers, orthogonal frequency division multiplexing (OFDM), and direct-sequence/spread-spectrum (DS/SS) based code division multiple access (CDMA) networks. Design algorithms for the optimal channel equalizers are developed for different channel models, and white noise processes, and simulation examples are worked out to illustrate the proposed design algorithms

    Time Delay Estimation from Low Rate Samples: A Union of Subspaces Approach

    Full text link
    Time delay estimation arises in many applications in which a multipath medium has to be identified from pulses transmitted through the channel. Various approaches have been proposed in the literature to identify time delays introduced by multipath environments. However, these methods either operate on the analog received signal, or require high sampling rates in order to achieve reasonable time resolution. In this paper, our goal is to develop a unified approach to time delay estimation from low rate samples of the output of a multipath channel. Our methods result in perfect recovery of the multipath delays from samples of the channel output at the lowest possible rate, even in the presence of overlapping transmitted pulses. This rate depends only on the number of multipath components and the transmission rate, but not on the bandwidth of the probing signal. In addition, our development allows for a variety of different sampling methods. By properly manipulating the low-rate samples, we show that the time delays can be recovered using the well-known ESPRIT algorithm. Combining results from sampling theory with those obtained in the context of direction of arrival estimation methods, we develop necessary and sufficient conditions on the transmitted pulse and the sampling functions in order to ensure perfect recovery of the channel parameters at the minimal possible rate. Our results can be viewed in a broader context, as a sampling theorem for analog signals defined over an infinite union of subspaces
    corecore