19 research outputs found

    Energy-efficient architectures for chip-scale networks and memory systems using silicon-photonics technology

    Full text link
    Today's supercomputers and cloud systems run many data-centric applications such as machine learning, graph algorithms, and cognitive processing, which have large data footprints and complex data access patterns. With computational capacity of large-scale systems projected to rise up to 50GFLOPS/W, the target energy-per-bit budget for data movement is expected to reach as low as 0.1pJ/bit, assuming 200bits/FLOP for data transfers. This tight energy budget impacts the design of both chip-scale networks and main memory systems. Conventional electrical links used in chip-scale networks (0.5-3pJ/bit) and DRAM systems used in main memory (>30pJ/bit) fail to provide sustained performance at low energy budgets. This thesis builds on the promising research on silicon-photonic technology to design system architectures and system management policies for chip-scale networks and main memory systems. The adoption of silicon-photonic links as chip-scale networks, however, is hampered by the high sensitivity of optical devices towards thermal and process variations. These device sensitivities result in high power overheads at high-speed communications. Moreover, applications differ in their resource utilization, resulting in application-specific thermal profiles and bandwidth needs. Similarly, optically-controlled memory systems designed using conventional electrical-based architectures require additional circuitry for electrical-to-optical and optical-to-electrical conversions within memory. These conversions increase the energy and latency per memory access. Due to these issues, chip-scale networks and memory systems designed using silicon-photonics technology leave much of their benefits underutilized. This thesis argues for the need to rearchitect memory systems and redesign network management policies such that they are aware of the application variability and the underlying device characteristics of silicon-photonic technology. We claim that such a cross-layer design enables a high-throughput and energy-efficient unified silicon-photonic link and main memory system. This thesis undertakes the cross-layer design with silicon-photonic technology in two fronts. First, we study the varying network bandwidth requirements across different applications and also within a given application. To address this variability, we develop bandwidth allocation policies that account for application needs and device sensitivities to ensure power-efficient operation of silicon-photonic links. Second, we design a novel architecture of an optically-controlled main memory system that is directly interfaced with silicon-photonic links using a novel read and write access protocol. Such a system ensures low-energy and high-throughput access from the processor to a high-density memory. To further address the diversity in application memory characteristics, we explore heterogeneous memory systems with multiple memory modules that provide varied power-performance benefits. We design a memory management policy for such systems that allocates pages at the granularity of memory objects within an application

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    In-memory computing with emerging memory devices: Status and outlook

    Get PDF
    Supporting data for "In-memory computing with emerging memory devices: status and outlook", submitted to APL Machine Learning

    Memristive Non-Volatile Memory Based on Graphene Materials

    Get PDF
    Resistive random access memory (RRAM), which is considered as one of the most promising next-generation non-volatile memory (NVM) devices and a representative of memristor technologies, demonstrated great potential in acting as an artificial synapse in the industry of neuromorphic systems and artificial intelligence (AI), due its advantages such as fast operation speed, low power consumption, and high device density. Graphene and related materials (GRMs), especially graphene oxide (GO), acting as active materials for RRAM devices, are considered as a promising alternative to other materials including metal oxides and perovskite materials. Herein, an overview of GRM-based RRAM devices is provided, with discussion about the properties of GRMs, main operation mechanisms for resistive switching (RS) behavior, figure of merit (FoM) summary, and prospect extension of GRM-based RRAM devices. With excellent physical and chemical advantages like intrinsic Young’s modulus (1.0 TPa), good tensile strength (130 GPa), excellent carrier mobility (2.0 × 105 cm2∙V−1∙s−1), and high thermal (5000 Wm−1∙K−1) and superior electrical conductivity (1.0 × 106 S∙m−1), GRMs can act as electrodes and resistive switching media in RRAM devices. In addition, the GRM-based interface between electrode and dielectric can have an effect on atomic diffusion limitation in dielectric and surface effect suppression. Immense amounts of concrete research indicate that GRMs might play a significant role in promoting the large-scale commercialization possibility of RRAM devices

    Understanding and Improving the Latency of DRAM-Based Memory Systems

    Full text link
    Over the past two decades, the storage capacity and access bandwidth of main memory have improved tremendously, by 128x and 20x, respectively. These improvements are mainly due to the continuous technology scaling of DRAM (dynamic random-access memory), which has been used as the physical substrate for main memory. In stark contrast with capacity and bandwidth, DRAM latency has remained almost constant, reducing by only 1.3x in the same time frame. Therefore, long DRAM latency continues to be a critical performance bottleneck in modern systems. Increasing core counts, and the emergence of increasingly more data-intensive and latency-critical applications further stress the importance of providing low-latency memory access. In this dissertation, we identify three main problems that contribute significantly to long latency of DRAM accesses. To address these problems, we present a series of new techniques. Our new techniques significantly improve both system performance and energy efficiency. We also examine the critical relationship between supply voltage and latency in modern DRAM chips and develop new mechanisms that exploit this voltage-latency trade-off to improve energy efficiency. The key conclusion of this dissertation is that augmenting DRAM architecture with simple and low-cost features, and developing a better understanding of manufactured DRAM chips together lead to significant memory latency reduction as well as energy efficiency improvement. We hope and believe that the proposed architectural techniques and the detailed experimental data and observations on real commodity DRAM chips presented in this dissertation will enable development of other new mechanisms to improve the performance, energy efficiency, or reliability of future memory systems.Comment: PhD Dissertatio

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within
    corecore