16 research outputs found

    Analysis of fixed-point and floating-point quantization in fast Fourier transform

    Get PDF
    Digital Signal Processors (DSPs) can be categorized on the basis of number system used for the arithmetic calculations. Either they can be fixed-point or floating-point processors. Some processors also support both fixed-point and floating-point number systems. Performing signal quantization is very necessary step in digital signal processing, either it is applied on the input signal to convert from analogue to digital domain or on the intermediate digital signal to keep it in the representable range to avoid overflow, it always introduces some error hence reducing the signal-to-noise ratio. Both number systems do not introduce the same amount of error when quantization is applied. So when implementing some DSP algorithm e.g. fast Fourier transform on a DSP processor, quantization analysis need to be performed for fixed-point and floating-point number system in order to have an optimized SNR. In this thesis, we have presented such quantization analysis on double precision floating-point FFT model and optimized fixed-point and floating-point quantization for reference FFT model in order to generate the same SNR. For this purpose fixed-point and floating-point quantization models are generated and placed in the reference FFT model and experiments are performed with randomly generated complex stimulus. Results have shown that generally floating-point quantized FFT model shows better SNR results than fixed-point quantized FFT model, but at smaller number of exponent bits and higher number fractional bits floating-point and fixed-point results are almost the same

    Optimization of DSSS Receivers Using Hardware-in-the-Loop Simulations

    Get PDF
    Over the years, there has been significant interest in defining a hardware abstraction layer to facilitate code reuse in software defined radio (SDR) applications. Designers are looking for a way to enable application software to specify a waveform, configure the platform, and control digital signal processing (DSP) functions in a hardware platform in a way that insulates it from the details of realization. This thesis presents a tool-based methodolgy for developing and optimizing a Direct Sequence Spread Spectrum (DSSS) transceiver deployed in custom hardware like Field Programmble Gate Arrays (FPGAs). The system model consists of a tranmitter which employs a quadrature phase shift keying (QPSK) modulation scheme, an additive white Gaussian noise (AWGN) channel, and a receiver whose main parts consist of an analog-to-digital converter (ADC), digital down converter (DDC), image rejection low-pass filter (LPF), carrier phase locked loop (PLL), tracking locked loop, down-sampler, spread spectrum correlators, and rectangular-to-polar converter. The design methodology is based on a new programming model for FPGAs developed in the industry by Xilinx Inc. The Xilinx System Generator for DSP software tool provides design portability and streamlines system development by enabling engineers to create and validate a system model in Xilinx FPGAs. By providing hierarchical modeling and automatic HDL code generation for programmable devices, designs can be easily verified through hardware-in-the-loop (HIL) simulations. HIL provides a significant increase in simulation speed which allows optimization of the receiver design with respect to the datapath size for different functional parts of the receiver. The parameterized datapath points used in the simulation are ADC resolution, DDC datapath size, LPF datapath size, correlator height, correlator datapath size, and rectangular-to-polar datapath size. These parameters are changed in the software enviornment and tested for bit error rate (BER) performance through real-time hardware simualtions. The final result presents a system design with minimum harware area occupancy relative to an acceptable BER degradation

    Topics in Adaptive Optics

    Get PDF
    Advances in adaptive optics technology and applications move forward at a rapid pace. The basic idea of wavefront compensation in real-time has been around since the mid 1970s. The first widely used application of adaptive optics was for compensating atmospheric turbulence effects in astronomical imaging and laser beam propagation. While some topics have been researched and reported for years, even decades, new applications and advances in the supporting technologies occur almost daily. This book brings together 11 original chapters related to adaptive optics, written by an international group of invited authors. Topics include atmospheric turbulence characterization, astronomy with large telescopes, image post-processing, high power laser distortion compensation, adaptive optics and the human eye, wavefront sensors, and deformable mirrors

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Aeronomy report no. 74: The Urbana meteor-radar system; design, development, and first observations

    Get PDF
    The design, development, and first observations of a high power meteor-radar system located near Urbana, Illinois are described. The roughly five-fold increase in usable echo rate compared to other facilities, along with automated digital data processing and interferometry measurement of echo arrival angles, permits unsurpassed observations of tidal structure and shorter period waves. Such observations are discussed. The technique of using echo decay rates to infer density and scale height and the method of inferring wind shear from radial acceleration are examined. An original experiment to test a theory of the Delta-region winter anomaly is presented

    Significant Accomplishments in Science and Technology at Goddard Space Flight Center, 1969

    Get PDF
    Aerospace scientific and technological studies in 1969 for satellite systems and spacecraft mission

    Design, Implementation and Characterization of a Cooperative Communications System

    Get PDF
    Cooperative communications is a class of techniques which seek to improve reliability and throughput in wireless systems by pooling the resources of distributed nodes. While cooperation can occur at different network layers and time scales, physical layer cooperation at symbol time scales offers the largest benefit. However, symbol level cooperation poses significant implementation challenges, especially in the context of a network of distributed nodes. We first present the design and implementation of a complete cooperative physical layer transceiver, built from scratch on the Wireless Open-Access Research Platform (WARP). In our implementation fully distributed nodes employ physical layer cooperation at symbol time scales without requiring a central synchronization source. Our design supports per-packet selection of non-cooperative or cooperative communication, with cooperative links utilizing either amplify-and-forward or decode-and-forward relaying. A single design implements transmission, reception and relaying, allowing each node to assume the role of source, destination or relay per packet. We also present experimental methodologies for evaluating our design and extensive experimental results of our transceiver's performance under a variety of topologies and propagation conditions. Our methods are designed to test both overall performance and to isolate and understand the underlying causes of performance limitations. Our results clearly demonstrate significant performance gains (more than 50× improvement in PER in some topologies) provided by physical layer cooperation even when subject to the constraints of a real-time implementation. As with all our work on WARP, our transceiver design and experimental framework are available via the open-source WARP repository for use by other wireless researchers

    Feasibility study for a numerical aerodynamic simulation facility. Volume 1

    Get PDF
    A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation
    corecore