3,637 research outputs found

    Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication

    Full text link
    This paper proposes a novel class of distributed continuous-time coordination algorithms to solve network optimization problems whose cost function is a sum of local cost functions associated to the individual agents. We establish the exponential convergence of the proposed algorithm under (i) strongly connected and weight-balanced digraph topologies when the local costs are strongly convex with globally Lipschitz gradients, and (ii) connected graph topologies when the local costs are strongly convex with locally Lipschitz gradients. When the local cost functions are convex and the global cost function is strictly convex, we establish asymptotic convergence under connected graph topologies. We also characterize the algorithm's correctness under time-varying interaction topologies and study its privacy preservation properties. Motivated by practical considerations, we analyze the algorithm implementation with discrete-time communication. We provide an upper bound on the stepsize that guarantees exponential convergence over connected graphs for implementations with periodic communication. Building on this result, we design a provably-correct centralized event-triggered communication scheme that is free of Zeno behavior. Finally, we develop a distributed, asynchronous event-triggered communication scheme that is also free of Zeno with asymptotic convergence guarantees. Several simulations illustrate our results.Comment: 12 page

    Distributed Event-Based State Estimation for Networked Systems: An LMI-Approach

    Full text link
    In this work, a dynamic system is controlled by multiple sensor-actuator agents, each of them commanding and observing parts of the system's input and output. The different agents sporadically exchange data with each other via a common bus network according to local event-triggering protocols. From these data, each agent estimates the complete dynamic state of the system and uses its estimate for feedback control. We propose a synthesis procedure for designing the agents' state estimators and the event triggering thresholds. The resulting distributed and event-based control system is guaranteed to be stable and to satisfy a predefined estimation performance criterion. The approach is applied to the control of a vehicle platoon, where the method's trade-off between performance and communication, and the scalability in the number of agents is demonstrated.Comment: This is an extended version of an article to appear in the IEEE Transactions on Automatic Control (additional parts in the Appendix

    Uncertain Multi-Agent Systems with Distributed Constrained Optimization Missions and Event-Triggered Communications: Application to Resource Allocation

    Full text link
    This paper deals with solving distributed optimization problems with equality constraints by a class of uncertain nonlinear heterogeneous dynamic multi-agent systems. It is assumed that each agent with an uncertain dynamic model has limited information about the main problem and limited access to the information of the state variables of the other agents. A distributed algorithm that guarantees cooperative solving of the constrained optimization problem by the agents is proposed. Via this algorithm, the agents do not need to continuously broadcast their data. It is shown that the proposed algorithm can be useful in solving resource allocation problems

    Co-design of output feedback laws and event-triggering conditions for linear systems

    Full text link
    We present a procedure to simultaneously design the output feedback law and the event-triggering condition to stabilize linear systems. The closed-loop system is shown to satisfy a global asymptotic stability property and the existence of a strictly positive minimum amount of time between two transmissions is guaranteed. The event-triggered controller is obtained by solving linear matrix inequalities (LMIs). We then exploit the flexibility of the method to maximize the guaranteed minimum amount of time between two transmissions. Finally, we provide a (heuristic) method to reduce the amount of transmissions, which is supported by numerical simulations
    • …
    corecore