301 research outputs found

    Further analysis of stability of uncertain neural networks with multiple time delays

    Get PDF
    This paper studies the robust stability of uncertain neural networks with multiple time delays with respect to the class of nondecreasing activation functions. By using the Lyapunov functional and homeomorphism mapping theorems, we derive a new delay-independent sufficient condition the existence, uniqueness, and global asymptotic stability of the equilibrium point for delayed neural networks with uncertain network parameters. The condition obtained for the robust stability establishes a matrix-norm relationship between the network parameters of the neural system, and therefore it can easily be verified. We also present some constructive numerical examples to compare the proposed result with results in the previously published corresponding literature. These comparative examples show that our new condition can be considered as an alternative result to the previous corresponding literature results as it defines a new set of network parameters ensuring the robust stability of delayed neural networks.Publisher's Versio

    Anti-periodic solution for fuzzy Cohen–Grossberg neural networks with time-varying and distributed delays

    Get PDF
    In this paper, by using a continuation theorem of coincidence degree theory and a differential inequality, we establish some sufficient conditions ensuring the existence and global exponential stability of anti-periodic solutions for a class of fuzzy Cohen–Grossberg neural networks with time-varying and distributed delays. In addition, we present an illustrative example to show the feasibility of obtained results

    Global attractive periodic solutions of neutral-type neural networks with delays in the leakage terms

    Get PDF
    In this paper, we introduce a class of neutral-type neural networks with delay in the leakage terms. Using coincidence degree theory, Lyapunov functional method and the properties of neutral operator, we establish some new sufficient criteria for the existence and global attractiveness of periodic solutions. Finally, an example demonstrates our findings

    New Stability Criterion for Takagi-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Probabilistic Time-Varying Delays

    Get PDF
    A new global asymptotic stability criterion of Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with probabilistic time-varying delays was derived, in which the diffusion item can play its role. Owing to deleting the boundedness conditions on amplification functions, the main result is a novelty to some extent. Besides, there is another novelty in methods, for Lyapunov-Krasovskii functional is the positive definite form of p powers, which is different from those of existing literature. Moreover, a numerical example illustrates the effectiveness of the proposed methods

    Projective synchronization analysis for BAM neural networks with time-varying delay via novel control

    Get PDF
    In this paper, the projective synchronization of BAM neural networks with time-varying delays is studied. Firstly, a type of novel adaptive controller is introduced for the considered neural networks, which can achieve projective synchronization. Then, based on the adaptive controller, some novel and useful conditions are obtained to ensure the projective synchronization of considered neural networks. To our knowledge, different from other forms of synchronization, projective synchronization is more suitable to clearly represent the nonlinear systems’ fragile nature. Besides, we solve the projective synchronization problem between two different chaotic BAM neural networks, while most of the existing works only concerned with the projective synchronization chaotic systems with the same topologies. Compared with the controllers in previous papers, the designed controllers in this paper do not require any activation functions during the application process. Finally, an example is provided to show the effectiveness of the theoretical results
    corecore