23 research outputs found

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    Some contributions to the analysis of piecewise linear systems.

    Get PDF
    This thesis consists of two parts, with contributions to the analysis of dynamical systems in continuous time and in discrete time, respectively. In the first part, we study several models of memristor oscillators of dimension three and four, providing for the first time rigorous mathematical results regarding the rich dynamics of such memristor oscillators, both in the case of piecewise linear models and polynomial models. Thus, for some families of discontinuous 3D piecewise linear memristor oscillators, we show the existence of an infinite family of invariant manifolds and that the dynamics on such manifolds can be modeled without resorting to discontinuous models. Our approach provides topologically equivalent continuous models with one dimension less but with one extra parameter associated to the initial conditions. It is possible so to justify the periodic behavior exhibited by such three dimensional memristor oscillators, by taking advantage of known results for planar continuous piecewise linear systems. By using the first-order Melnikov theory, we derive the bifurcation set for a three-parametric family of Bogdanov-Takens systems with symmetry and deformation. As an applications of these results, we study a family of 3D memristor oscillators where the characteristic function of the memristor is a cubic polynomial. In this family we also show the existence of an infinity number of invariant manifolds. Also, we clarify some misconceptions that arise from the numerical simulations of these systems, emphasizing the important role of invariant manifolds in these models. In a similar way than for the 3D case, we study some discontinuous 4D piecewise linear memristor oscillators, and we show that the dynamics in each stratum is topologically equivalent to a continuous 3D piecewise linear dynamical system. Some previous results on bifurcations in such reduced systems, allow us to detect rigorously for the first time a multiple focus-center-cycle bifurcation in a three-parameter space, leading to the appearance of a topological sphere in the original model, completely foliated by stable periodic orbits. In the second part of this thesis, we show that the two-dimensional stroboscopic map defined by a second order system with a relay based control and a linear switching surface is topologically equivalent to a canonical form for discontinuous piecewise linear systems. Studying the main properties of the stroboscopic map defined by such a canonical form, the orbits of period two are completely characterized. At last, we give a conjecture about the occurrence of the big bang bifurcation in the previous map

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Task Allocation in Foraging Robot Swarms:The Role of Information Sharing

    Get PDF
    Autonomous task allocation is a desirable feature of robot swarms that collect and deliver items in scenarios where congestion, caused by accumulated items or robots, can temporarily interfere with swarm behaviour. In such settings, self-regulation of workforce can prevent unnecessary energy consumption. We explore two types of self-regulation: non-social, where robots become idle upon experiencing congestion, and social, where robots broadcast information about congestion to their team mates in order to socially inhibit foraging. We show that while both types of self-regulation can lead to improved energy efficiency and increase the amount of resource collected, the speed with which information about congestion flows through a swarm affects the scalability of these algorithms
    corecore