14,799 research outputs found

    Global bifurcation for the Whitham equation

    Full text link
    We prove the existence of a global bifurcation branch of 2π2\pi-periodic, smooth, traveling-wave solutions of the Whitham equation. It is shown that any subset of solutions in the global branch contains a sequence which converges uniformly to some solution of H\"older class CαC^{\alpha}, α<12\alpha < \frac{1}{2}. Bifurcation formulas are given, as well as some properties along the global bifurcation branch. In addition, a spectral scheme for computing approximations to those waves is put forward, and several numerical results along the global bifurcation branch are presented, including the presence of a turning point and a `highest', cusped wave. Both analytic and numerical results are compared to traveling-wave solutions of the KdV equation

    Functional factor analysis for periodic remote sensing data

    Get PDF
    We present a new approach to factor rotation for functional data. This is achieved by rotating the functional principal components toward a predefined space of periodic functions designed to decompose the total variation into components that are nearly-periodic and nearly-aperiodic with a predefined period. We show that the factor rotation can be obtained by calculation of canonical correlations between appropriate spaces which make the methodology computationally efficient. Moreover, we demonstrate that our proposed rotations provide stable and interpretable results in the presence of highly complex covariance. This work is motivated by the goal of finding interpretable sources of variability in gridded time series of vegetation index measurements obtained from remote sensing, and we demonstrate our methodology through an application of factor rotation of this data.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS518 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Geometry of the ergodic quotient reveals coherent structures in flows

    Full text link
    Dynamical systems that exhibit diverse behaviors can rarely be completely understood using a single approach. However, by identifying coherent structures in their state spaces, i.e., regions of uniform and simpler behavior, we could hope to study each of the structures separately and then form the understanding of the system as a whole. The method we present in this paper uses trajectory averages of scalar functions on the state space to: (a) identify invariant sets in the state space, (b) form coherent structures by aggregating invariant sets that are similar across multiple spatial scales. First, we construct the ergodic quotient, the object obtained by mapping trajectories to the space of trajectory averages of a function basis on the state space. Second, we endow the ergodic quotient with a metric structure that successfully captures how similar the invariant sets are in the state space. Finally, we parametrize the ergodic quotient using intrinsic diffusion modes on it. By segmenting the ergodic quotient based on the diffusion modes, we extract coherent features in the state space of the dynamical system. The algorithm is validated by analyzing the Arnold-Beltrami-Childress flow, which was the test-bed for alternative approaches: the Ulam's approximation of the transfer operator and the computation of Lagrangian Coherent Structures. Furthermore, we explain how the method extends the Poincar\'e map analysis for periodic flows. As a demonstration, we apply the method to a periodically-driven three-dimensional Hill's vortex flow, discovering unknown coherent structures in its state space. In the end, we discuss differences between the ergodic quotient and alternatives, propose a generalization to analysis of (quasi-)periodic structures, and lay out future research directions.Comment: Submitted to Elsevier Physica D: Nonlinear Phenomen

    Deep learning as closure for irreversible processes: A data-driven generalized Langevin equation

    Full text link
    The ultimate goal of physics is finding a unique equation capable of describing the evolution of any observable quantity in a self-consistent way. Within the field of statistical physics, such an equation is known as the generalized Langevin equation (GLE). Nevertheless, the formal and exact GLE is not particularly useful, since it depends on the complete history of the observable at hand, and on hidden degrees of freedom typically inaccessible from a theoretical point of view. In this work, we propose the use of deep neural networks as a new avenue for learning the intricacies of the unknowns mentioned above. By using machine learning to eliminate the unknowns from GLEs, our methodology outperforms previous approaches (in terms of efficiency and robustness) where general fitting functions were postulated. Finally, our work is tested against several prototypical examples, from a colloidal systems and particle chains immersed in a thermal bath, to climatology and financial models. In all cases, our methodology exhibits an excellent agreement with the actual dynamics of the observables under consideration
    corecore