157 research outputs found

    A Novel Variable Geometry based Planar Inductor Design for Wireless Charging Application

    Get PDF
    In this thesis, the performance, modelling and application of a planar electromagnetic coil are discussed. Due to the small size profiles and their non‐contact nature, planar coils are widely used due to their simple and basic design. The uncertain parameters have been identified and simulated using ANSYS that has been run utilising a newly developed MATLAB code. This code has made it possible to run thousands of trials without the need to manually input the various parameters for each run. This has facilitated the process of obtaining all the probable solutions within the defined range of properties. The optimum and robust design properties were then determined. The thesis discusses the experimentation and the finite element modelling (FEM) performed for developing the design of planar coils and used in wireless chargers. In addition, the thesis investigates the performance of various topologies of planar coils when they are used in wireless chargers. The ANSYS Maxwell FEM package has been used to analyse the models while varying the topologies of the coils. For this purpose, different models in FEM were constructed and then tested with topologies such as circular, square and hexagon coil configurations. The described methodology is considered as an effective way for obtaining maximum Power transfer efficiency (PTE) with a certain distance on planar coils with better performance. The explored designs studies are, namely: (1) Optimization of Planar Coil Using Multi-core, (2) planar coil with an Orthogonal Flux Guide, (3) Using the Variable Geometry in a Planar coil for an Optimised Performance by using the robust design method, (4) Design and Integration of Planar coil on wireless charger. In the first design study, the aim is to present the behaviour of a newly developed planar coil, built from a Mu-metal, via simulation. The structure consists of an excitation coil, sensing coils and three ferromagnetic cores 2 located on the top, middle and bottom sections of the coil in order to concentrate the field using the iterative optimisation technique. Magnetic materials have characteristics which allows them to influence the magnetic field in its environment. The second design study presents the optimal geometry and material selection for the planar with an Orthogonal Flux Guide. The study demonstrates the optimising of the materials and geometry of the coil that provides savings in terms of material usage as well as the employed electric current to produce an equivalent magnetic field. The third design study presents the variable geometry in a planar inductor to obtain the optimised performance. The study has provided the optimum and robust design parameters in terms of different topologies such as circular, square and hexagon coil configurations and then tested, Once the best topology is chosen based on performance. The originality of the work is evident through the randomisation of the parameters using the developed MATLAB code and the optimisation of the joint performance under defined conditions. Finally, the fourth design study presents the development of the planar coil applications. Three shapes of coils are designed and experimented to calculate the inductance and the maximum power transfer efficiency (PTW) over various spacing distances and frequency

    The Critical Role of Public Charging Infrastructure

    Full text link
    Editors: Peter Fox-Penner, PhD, Z. Justin Ren, PhD, David O. JermainA decade after the launch of the contemporary global electric vehicle (EV) market, most cities face a major challenge preparing for rising EV demand. Some cities, and the leaders who shape them, are meeting and even leading demand for EV infrastructure. This book aggregates deep, groundbreaking research in the areas of urban EV deployment for city managers, private developers, urban planners, and utilities who want to understand and lead change

    A Bluetooth Low-Energy Wireless Sensor Platform for Continuous Monitoring of a Bioreactor Environment during Cell Manufacturing

    Get PDF
    A wireless sensor platform based on Bluetooth Low-Energy (BLE) technology was designed and prototyped for continuous monitoring of physical conditions and chemical analytes, which could be applied to bioreactors during the cell manufacturing process. Controlling environmental conditions such as pH, oxygen, glucose, temperature, and pressure is vital to ensure the consistency of the manufactured cells and maintain the potency of the product. Current methods to control bioreactor conditions focus only on monitoring the cell culture environment during cell growth, but there is a lack of direct quantification of cell properties to provide an integrated feedback system that can also maintain cell quality. Furthermore, current methods are typically expensive and inflexible for new bioreactor designs. The ultimate goal of this project is to develop a low-cost wireless sensor platform that can incorporate different types of sensors for monitoring both growth conditions and cell quality in various types of bioreactors. This thesis represents the first phase of the project with the development of the sensor platform and prototyping a pH and temperature sensor module along with the platform. Bench tests demonstrated the efficacy of these sensors in continuous monitoring of pH and temperature over several days. With the sensor functionality proven, the next step is to examine the biocompatibility of the sensor, as well as expand the parameters to include oxygen, glucose, and pressure. New sensors, such as those based on the impedimetric technique, will also be developed to direct cell quality evaluation

    Sustainable Forest Management Techniques

    Get PDF

    The lipmouse: a labially controlled mouse cursor emulation device for people with special needs

    Get PDF
    People with disabilities are part of the society. However, simple actions in their daily life, such as using a computer become a challenge. In many cases they need the assistance of another person. Assistive technologies help performing these tasks and help people with special needs to live more independently. In 2010, a collaborative project called "AsTeRICS" (Assistive Technology Rapid Integration and Construction Set) was initiated and partly funded by the European Commission, where 9 international partner organisations worked together to develop a free, open-source, flexible and affordable assistive technology tool. A mouse cursor emulator controlled through the lips was developed for the AsTeRICS platform. This device was called "Lipmouse" and was intended to provide a way of accessing a computer, tablet or notebook to a person with an impairment in her/his upper limbs. This thesis is a continuation and enhancement of the Lipmouse development. The improvements accomplished can be summarized in three blocks: The first part of this thesis consisted of the development of a portable version of the Lipmouse. The initial version worked via USB cable. For that purpose, the new version incorporates a Bluetooth module and a battery power supply system. The second part was focused on the design of a PCB where all electronic components of the Lipmouse were integrated. Finally, the Lipmouse source code was enhanced in two ways: The firmware of the Lipmouse was modified for supporting the new functionalities described above. On the other hand, a specific software plugin for the integration of the Lipmouse into the AsTeRICS framework has been developed.Ingeniería Técnica de Telecomunicación, especialidad Sonido e ImagenTelekomunikazio Ingeniaritza Teknikoa. Soinua eta Irudia Berezitasun

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF
    corecore