18,836 research outputs found

    Paths to Understanding Birational Rowmotion on Products of Two Chains

    Get PDF
    Birational rowmotion is an action on the space of assignments of rational functions to the elements of a finite partially-ordered set (poset). It is lifted from the well-studied rowmotion map on order ideals (equivariantly on antichains) of a poset PP, which when iterated on special posets, has unexpectedly nice properties in terms of periodicity, cyclic sieving, and homomesy (statistics whose averages over each orbit are constant) [AST11, BW74, CF95, Pan09, PR13, RuSh12,RuWa15+,SW12, ThWi17, Yil17. In this context, rowmotion appears to be related to Auslander-Reiten translation on certain quivers, and birational rowmotion to YY-systems of type Am×AnA_m \times A_n described in Zamolodchikov periodicity. We give a formula in terms of families of non-intersecting lattice paths for iterated actions of the birational rowmotion map on a product of two chains. This allows us to give a much simpler direct proof of the key fact that the period of this map on a product of chains of lengths rr and ss is r+s+2r+s+2 (first proved by D.~Grinberg and the second author), as well as the first proof of the birational analogue of homomesy along files for such posets.Comment: 31 pages, to appear in Algebraic Combinatoric

    The universality of iterated hashing over variable-length strings

    Get PDF
    Iterated hash functions process strings recursively, one character at a time. At each iteration, they compute a new hash value from the preceding hash value and the next character. We prove that iterated hashing can be pairwise independent, but never 3-wise independent. We show that it can be almost universal over strings much longer than the number of hash values; we bound the maximal string length given the collision probability

    Relations between elliptic multiple zeta values and a special derivation algebra

    Full text link
    We investigate relations between elliptic multiple zeta values and describe a method to derive the number of indecomposable elements of given weight and length. Our method is based on representing elliptic multiple zeta values as iterated integrals over Eisenstein series and exploiting the connection with a special derivation algebra. Its commutator relations give rise to constraints on the iterated integrals over Eisenstein series relevant for elliptic multiple zeta values and thereby allow to count the indecomposable representatives. Conversely, the above connection suggests apparently new relations in the derivation algebra. Under https://tools.aei.mpg.de/emzv we provide relations for elliptic multiple zeta values over a wide range of weights and lengths.Comment: 43 pages, v2:replaced with published versio

    Time Quasilattices in Dissipative Dynamical Systems

    Full text link
    We establish the existence of `time quasilattices' as stable trajectories in dissipative dynamical systems. These tilings of the time axis, with two unit cells of different durations, can be generated as cuts through a periodic lattice spanned by two orthogonal directions of time. We show that there are precisely two admissible time quasilattices, which we term the infinite Pell and Clapeyron words, reached by a generalization of the period-doubling cascade. Finite Pell and Clapeyron words of increasing length provide systematic periodic approximations to time quasilattices which can be verified experimentally. The results apply to all systems featuring the universal sequence of periodic windows. We provide examples of discrete-time maps, and periodically-driven continuous-time dynamical systems. We identify quantum many-body systems in which time quasilattices develop rigidity via the interaction of many degrees of freedom, thus constituting dissipative discrete `time quasicrystals'.Comment: 38 pages, 14 figures. This version incorporates "Pell and Clapeyron Words as Stable Trajectories in Dynamical Systems", arXiv:1707.09333. Submission to SciPos

    A class of non-holomorphic modular forms II : equivariant iterated Eisenstein integrals

    Full text link
    We introduce a new family of real analytic modular forms on the upper half plane. They are arguably the simplest class of `mixed' versions of modular forms of level one and are constructed out of real and imaginary parts of iterated integrals of holomorphic Eisenstein series. They form an algebra of functions satisfying many properties analogous to classical holomorphic modular forms. In particular, they admit expansions in q,qq, \overline{q} and logq\log |q| involving only rational numbers and single-valued multiple zeta values. The first non-trivial functions in this class are real analytic Eisenstein series.Comment: Introduction rewritten in version 2, and other minor edit

    Iterative Universal Rigidity

    Full text link
    A bar framework determined by a finite graph GG and configuration p\bf p in dd space is universally rigid if it is rigid in any RDRd{\mathbb R}^D \supset {\mathbb R}^d. We provide a characterization of universally rigidity for any graph GG and any configuration p{\bf p} in terms of a sequence of affine subsets of the space of configurations. This corresponds to a facial reduction process for closed finite dimensional convex cones.Comment: 41 pages, 12 figure

    Spectrum of Fractal Interpolation Functions

    Full text link
    In this paper we compute the Fourier spectrum of the Fractal Interpolation Functions FIFs as introduced by Michael Barnsley. We show that there is an analytical way to compute them. In this paper we attempt to solve the inverse problem of FIF by using the spectru
    corecore