14 research outputs found

    Integrating Peridynamics with Material Point Method for Elastoplastic Material Modeling

    Get PDF
    © Springer Nature Switzerland AG 2019. We present a novel integral-based Material Point Method (MPM) using state based peridynamics structure for modeling elastoplastic material and fracture animation. Previous partial derivative based MPM studies face challenges of underlying instability issues of particle distribution and the complexity of modeling discontinuities. To alleviate these problems, we integrate the strain metric in the basic elastic constitutive model by using material point truss structure, which outweighs differential-based methods in both accuracy and stability. To model plasticity, we incorporate our constitutive model with deviatoric flow theory and a simple yield function. It is straightforward to handle the problem of cracking in our hybrid framework. Our method adopts two time integration ways to update crack interface and fracture inner parts, which overcome the unnecessary grid duplication. Our work can create a wide range of material phenomenon including elasticity, plasticity, and fracture. Our framework provides an attractive method for producing elastoplastic materials and fracture with visual realism and high stability

    Simulating Fractures with Bonded Discrete Element Method

    Get PDF
    Along with motion and deformation, fracture is a fundamental behaviour for solid materials, playing a critical role in physically-based animation. Many simulation methods including both continuum and discrete approaches have been used by the graphics community to animate fractures for various materials. However, compared with motion and deformation, fracture remains a challenging task for simulation, because the material's geometry, topology and mechanical states all undergo continuous (and sometimes chaotic) changes as fragmentation develops. Recognizing the discontinuous nature of fragmentation, we propose a discrete approach, namely the Bonded Discrete Element Method (BDEM), for fracture simulation. The research of BDEM in engineering has been growing rapidly in recent years, while its potential in graphics has not been explored. We also introduce several novel changes to BDEM to make it more suitable for animation design. Compared with other fracture simulation methods, the BDEM has some attractive benefits, e.g. efficient handling of multiple fractures, simple formulation and implementation, and good scaling consistency. But it also has some critical weaknesses, e.g. high computational cost, which demand further research. A number of examples are presented to demonstrate the pros and cons, which are then highlighted in the conclusion and discussion

    Variational Bonded Discrete Element Method with Manifold Optimization

    Full text link
    This paper proposes a novel approach that combines variational integration with the bonded discrete element method (BDEM) to achieve faster and more accurate fracture simulations. The approach leverages the efficiency of implicit integration and the accuracy of BDEM in modeling fracture phenomena. We introduce a variational integrator and a manifold optimization approach utilizing a nullspace operator to speed up the solving of quaternion-constrained systems. Additionally, the paper presents an element packing and surface reconstruction method specifically designed for bonded discrete element methods. Results from the experiments prove that the proposed method offers 2.8 to 12 times faster state-of-the-art methods

    A comparative review of peridynamics and phase-field models for engineering fracture mechanics

    Get PDF
    Computational modeling of the initiation and propagation of complex fracture is central to the discipline of engineering fracture mechanics. This review focuses on two promising approaches: phase-field (PF) and peridynamic (PD) models applied to this class of problems. The basic concepts consisting of constitutive models, failure criteria, discretization schemes, and numerical analysis are briefly summarized for both models. Validation against experimental data is essential for all computational methods to demonstrate predictive accuracy. To that end, the Sandia Fracture Challenge and similar experimental data sets where both models could be benchmarked against are showcased. Emphasis is made to converge on common metrics for the evaluation of these two fracture modeling approaches. Both PD and PF models are assessed in terms of their computational effort and predictive capabilities, with their relative advantages and challenges are summarized

    A comparative review of peridynamics and phase-field models for engineering fracture mechanics

    Get PDF
    Computational modeling of the initiation and propagation of complex fracture is central to the discipline of engineering fracture mechanics. This review focuses on two promising approaches: phase-field (PF) and peridynamic (PD) models applied to this class of problems. The basic concepts consisting of constitutive models, failure criteria, discretization schemes, and numerical analysis are briefly summarized for both models. Validation against experimental data is essential for all computational methods to demonstrate predictive accuracy. To that end, the Sandia Fracture Challenge and similar experimental data sets where both models could be benchmarked against are showcased. Emphasis is made to converge on common metrics for the evaluation of these two fracture modeling approaches. Both PD and PF models are assessed in terms of their computational effort and predictive capabilities, with their relative advantages and challenges are summarized. © 2022, The Author(s)

    In conversation with simulation: The application of numerical simulation to the design of structural nodal connections

    Get PDF
    The thesis explores methods for integration of structural analysis, design and production in a digital design environment. The somewhat ambiguous title implies the ambition to make such integration in relation to the explorative phase of the design process which is described by Donald Sch\uf6n as having a conversational character. A conversation between the designer and the representation by the means of the tool. The tool is in this context a simulation and instead of exploring the potential of automatic optimisation, the simulation is used for designer driven exploration. The aim of the thesis is to give an overview of how this type of integration is currently being approached and to contribute with new tools and methods in that pursuit. The motivation behind the work is to lower the threshold for the application of structural analysis in early-stage design, with an ambition of architectural qualities and resource efficiency in mind. An overview of the historical context is portrayed with broad brush strokes, followed by a more precise account of the mathematical and physical context, which is complemented by an attempt to describe how our tools and roles tend to interplay in the composition of the design process. Methods such as the finite element method, isogeometric analysis, smoothed particle hydrodynamics and peridynamics, including their related geometrical representations are introduced in relation to this context. A variety of production techniques are also discussed in relation to material mechanical properties for conventional building materials such as steel, concrete and wood.The method development is approached through the use of numerical and physical experiments which are applied for design of material-efficient structural components, with a particular design process perspective. The nodal connection is chosen as an application because it combines geometrical and structural complexity in an element that is of crucial importance for a holistic spatial setting, while often being produced in a material inefficient way, with poor attention to detail.The three articles that are included follow a trajectory from large to small, from the holistic to the particular. The first article is a description of the computational design work with the roof for the new international airport of Mexico City. The second article aims to address one of the challenges that were faced in that project with material inefficiency for nodal connections, with a critical perspective on optimisation. The final article presents an extension/modification for the peridynamics theory enabling variable particle sizes and an irregular particle distribution through the introduction of a concept called force flux density. The development is motivated by limitations found in the present theory through numerical experiments. The method enables simulation of phenomena such as brittle fracture, for which correlation with Griffith\u27s theory of fracture is shown. Further work includes an extension of the force flux method from 2D to 3D, including calibration of material a model for 3D printed steel. Other possibilities involve the exploration of how such a method can adapt to the various stages of the design process, where requirements of accuracy, speed and interactivity will vary

    Lagrangian methods for ballistic impact simulations/

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 85-92).This thesis explores various Lagrangian methods for simulating ballistic impact with the ultimate goal of finding a universal, robust and scalable computational framework to assist in the design of armor systems. An overview is provided of existing Lagrangian strategies including particle methods, meshless methods, and the peridynamic approach. We review the continuum formulation of mechanics and its discretization using finite elements. A rigid body contact algorithm for explicit dynamic finite elements is presented and used to model a rigid sphere impacting a confined alumina tile. The constitutive model for the alumina is provided by the Deshpande-Evans ceramic damage model. These simulations were shown to capture experimentally observed radial crack patterns. An adaptive remeshing strategy using finite elements is then explored and applied, with limited success, to the problem of predicting the transition from dwell to penetration for long-rod penetrators impacting confined ceramic targets at high velocities. Motivated by the difficulties of mesh-based Lagrangian approaches for modeling impact, an alternative Lagrangian approach is investigated which uses established constitutive relations within a particle-based computational framework. The resulting algorithm is based on a discretization of the peridynamic formulation of continuum mechanics. A validating benchmark example using a Taylor impact test is shown and compared to previous results from the literature. Further numerical examples involving ballistic impact and the crushing of an aluminum sandwich structures provide further demonstration of the method's potential for armor applications.by Michael Ronne Tupek.S.M
    corecore