40,155 research outputs found

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness Ć¢ā‚¬ā€œ Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Virtual Meeting Rooms: From Observation to Simulation

    Get PDF
    Virtual meeting rooms are used for simulation of real meeting behavior and can show how people behave, how they gesture, move their heads, bodies, their gaze behavior during conversations. They are used for visualising models of meeting behavior, and they can be used for the evaluation of these models. They are also used to show the effects of controlling certain parameters on the behavior and in experiments to see what the effect is on communication when various channels of information - speech, gaze, gesture, posture - are switched off or manipulated in other ways. The paper presents the various stages in the development of a virtual meeting room as well and illustrates its uses by presenting some results of experiments to see whether human judges can induce conversational roles in a virtual meeting situation when they only see the head movements of participants in the meeting

    Use of scenario evaluation in preparation for deployment of a collaborative system for knowledge transfer - the case of KiMERA

    Get PDF
    This paper presented an approach for the evaluation of a collaborative system, after the completion of system development and software testing but before its deployment. Scenario and collaborative episodes were designed and data collected from users role-playing. This was found to be a useful step in refining the user training, in setting the right level of user expectation when the system started to roll-out to real users and in providing feedback to the development team

    Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG.

    Get PDF
    Real-world brain imaging by EEG requires accurate annotation of complex subject-environment interactions in event-rich tasks and paradigms. This paper describes the evolution of the Hierarchical Event Descriptor (HED) system for systematically describing both laboratory and real-world events. HED version 2, first described here, provides the semantic capability of describing a variety of subject and environmental states. HED descriptions can include stimulus presentation events on screen or in virtual worlds, experimental or spontaneous events occurring in the real world environment, and events experienced via one or multiple sensory modalities. Furthermore, HED 2 can distinguish between the mere presence of an object and its actual (or putative) perception by a subject. Although the HED framework has implicit ontological and linked data representations, the user-interface for HED annotation is more intuitive than traditional ontological annotation. We believe that hiding the formal representations allows for a more user-friendly interface, making consistent, detailed tagging of experimental, and real-world events possible for research users. HED is extensible while retaining the advantages of having an enforced common core vocabulary. We have developed a collection of tools to support HED tag assignment and validation; these are available at hedtags.org. A plug-in for EEGLAB (sccn.ucsd.edu/eeglab), CTAGGER, is also available to speed the process of tagging existing studies

    Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and Research

    Get PDF
    A variety of human factors studies related to space station design are presented. Subjects include proximity operations and window design, spatial perceptual issues regarding displays, image management, workload research, spatial cognition, virtual interface, fault diagnosis in orbital refueling, and error tolerance and procedure aids

    Functional Electrical Stimulation mediated by Iterative Learning Control and 3D robotics reduces motor impairment in chronic stroke

    Get PDF
    Background: Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patientsā€™ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods: Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participantsā€™ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results: From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions: The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this
    • ā€¦
    corecore