1,024 research outputs found

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    A two-level structure for advanced space power system automation

    Get PDF
    The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed

    Routing on the Channel Dependency Graph:: A New Approach to Deadlock-Free, Destination-Based, High-Performance Routing for Lossless Interconnection Networks

    Get PDF
    In the pursuit for ever-increasing compute power, and with Moore's law slowly coming to an end, high-performance computing started to scale-out to larger systems. Alongside the increasing system size, the interconnection network is growing to accommodate and connect tens of thousands of compute nodes. These networks have a large influence on total cost, application performance, energy consumption, and overall system efficiency of the supercomputer. Unfortunately, state-of-the-art routing algorithms, which define the packet paths through the network, do not utilize this important resource efficiently. Topology-aware routing algorithms become increasingly inapplicable, due to irregular topologies, which either are irregular by design, or most often a result of hardware failures. Exchanging faulty network components potentially requires whole system downtime further increasing the cost of the failure. This management approach becomes more and more impractical due to the scale of today's networks and the accompanying steady decrease of the mean time between failures. Alternative methods of operating and maintaining these high-performance interconnects, both in terms of hardware- and software-management, are necessary to mitigate negative effects experienced by scientific applications executed on the supercomputer. However, existing topology-agnostic routing algorithms either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. Using the fail-in-place strategy, a well-established method for storage systems to repair only critical component failures, is a feasible solution for current and future HPC interconnects as well as other large-scale installations such as data center networks. Although, an appropriate combination of topology and routing algorithm is required to minimize the throughput degradation for the entire system. This thesis contributes a network simulation toolchain to facilitate the process of finding a suitable combination, either during system design or while it is in operation. On top of this foundation, a key contribution is a novel scheduling-aware routing, which reduces fault-induced throughput degradation while improving overall network utilization. The scheduling-aware routing performs frequent property preserving routing updates to optimize the path balancing for simultaneously running batch jobs. The increased deployment of lossless interconnection networks, in conjunction with fail-in-place modes of operation and topology-agnostic, scheduling-aware routing algorithms, necessitates new solutions to solve the routing-deadlock problem. Therefore, this thesis further advances the state-of-the-art by introducing a novel concept of routing on the channel dependency graph, which allows the design of an universally applicable destination-based routing capable of optimizing the path balancing without exceeding a given number of virtual channels, which are a common hardware limitation. This disruptive innovation enables implicit deadlock-avoidance during path calculation, instead of solving both problems separately as all previous solutions

    Shared memory with hidden latency on a family of mesh-like networks

    Get PDF

    Efficient Interconnection Schemes for VLSI and Parallel Computation

    Get PDF
    This thesis is primarily concerned with two problems of interconnecting components in VLSI technologies. In the first case, the goal is to construct efficient interconnection networks for general-purpose parallel computers. The second problem is a more specialized problem in the design of VLSI chips, namely multilayer channel routing. In addition, a final part of this thesis provides lower bounds on the area required for VLSI implementations of finite-state machines. This thesis shows that networks based on Leiserson\u27s fat-tree architecture are nearly as good as any network built in a comparable amount of physical space. It shows that these universal networks can efficiently simulate competing networks by means of an appropriate correspondence between network components and efficient algorithms for routing messages on the universal network. In particular, a universal network of area A can simulate competing networks with O(lg^3A) slowdown (in bit-times), using a very simple randomized routing algorithm and simple network components. Alternatively, a packet routing scheme of Leighton, Maggs, and Rao can be used in conjunction with more sophisticated switching components to achieve O(lg^2 A) slowdown. Several other important aspects of universality are also discussed. It is shown that universal networks can be constructed in area linear in the number of processors, so that there is no need to restrict the density of processors in competing networks. Also results are presented for comparisons between networks of different size or with processors of different sizes (as determined by the amount of attached memory). Of particular interest is the fact that a universal network built from sufficiently small processors can simulate (with the slowdown already quoted) any competing network of comparable size regardless of the size of processors in the competing network. In addition, many of the results given do not require the usual assumption of unit wire delay. Finally, though most of the discussion is in the two-dimensional world, the results are shown to apply in three dimensions by way of a simple demonstration of general results on graph layout in three dimensions. The second main problem considered in this thesis is channel routing when many layers of interconnect are available, a scenario that is becoming more and more meaningful as chip fabrication technologies advance. This thesis describes a system MulCh for multilayer channel routing which extends the Chameleon system developed at U. C. Berkeley. Like Chameleon, MulCh divides a multilayer problem into essentially independent subproblems of at most three layers, but unlike Chameleon, MulCh considers the possibility of using partitions comprised of a single layer instead of only partitions of two or three layers. Experimental results show that MulCh often performs better than Chameleon in terms of channel width, total net length, and number of vias. In addition to a description of MulCh as implemented, this thesis provides improved algorithms for subtasks performed by MulCh, thereby indicating potential improvements in the speed and performance of multilayer channel routing. In particular, a linear time algorithm is given for determining the minimum width required for a single-layer channel routing problem, and an algorithm is given for maintaining the density of a collection of nets in logarithmic time per net insertion. The last part of this thesis shows that straightforward techniques for implementing finite-state machines are optimal in the worst case. Specifically, for any s and k, there is a deterministic finite-state machine with s states and k symbols such that any layout algorithm requires (ks lg s) area to lay out its realization. For nondeterministic machines, there is an analogous lower bound of (ks^2) area

    Modernization of Manufacturing with Cybersecurity at the Forefront

    Full text link
    With the proliferation of Industrial Control Systems (ICSs), manufacturing processes have improved over the last 30 years, however, the organizational focus to securely exchange and process information to/from integrated systems has been consistently lacking. These environments continue to be susceptible to security vulnerabilities, despite history [15] showing that cybersecurity exposures in manufacturing have largely gone unaddressed and continue to rise [52]. This study evaluates cybersecurity challenges in the industry and proposes recommendations for practical and fiscally responsible defense-in-depth cybersecurity protections for manufacturing environments. The business operating model, how ICSs became pervasive, as well as the major components that enable the operational technology (OT) were evaluated. With an understanding of the traditional network architecture for the industry [37], the rapidly evolving challenges facing the industry were examined. These challenges are impactful to the traditional and slow to change manufacturing operating model that has not focused on the necessary cyber protections for their OT environments. In addition, the industry is now facing game-changing technological concepts such as advanced manufacturing and Industry 4.0 that bring new complex challenges and cyber threats, unfamiliar to most in the industry. This is all underpinned by an organizational divide where the personnel most knowledgeable with the modern technology and cyber risks, in the majority of cases, are not responsible for the OT architecture and security. These headwinds impact an industry which spends the least on IT and cyber security than any other industry, globally [22]. The cyber risks and challenges in the industry are diverse, spanning technological and organizational competencies, stemming from purpose built components which operate in an ecosystem where cybersecurity is an afterthought. As a means to close the gap, practical and reasonable recommendations to address these problems are discussed; some specific and unique to the manufacturing industry while others are fundamental applications discussed with a manufacturing industry lens, which are commonly ignored due to perceived complexity, cost or simply lack of awareness. Lastly, a number of these recommendations were selected for further evaluation and implementation; challenges, approach, benefits and outcomes are shared showing measureable improvements to the cybersecurity posture of the organization.Master of ScienceComputer and Information Science, College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/147433/1/49698122_CIS699 - Mangano Thesis - Modernization of Manufacturing with Cybersecurity at the Forefront - Final 121018-v4.pdfDescription of 49698122_CIS699 - Mangano Thesis - Modernization of Manufacturing with Cybersecurity at the Forefront - Final 121018-v4.pdf : Thesi

    Contention and achieved performance in multicomputer wormhole routing networks

    Get PDF

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Holographic optical interconnects in dichromated gelatin

    Get PDF
    Abstract unavailable please refer to PD
    corecore