85 research outputs found

    A SYSTEM FOR THE EVALUATION OF ON-WATER STROKE FORCE DEVELOPMENT DURING CANOE AND KAYAK EVENTS

    Get PDF
    Sport practitioners, including coaches and athletes of a wide variety of sport disciplines, are becoming more and more aware of the value of recording and analysing the real time data correlates of the force output of the athlete under competitive conditions. In no other comparable onwater sport is the relationship between absolute force development and the manner of its production and application more critical to the final outcome of the event than in flatwater canoe and kayak, particularly in multiple athlete events (Plagenhoef, 1979; Mann and Kearney, 1980)

    物理複製不能関数における安全性の評価と向上に関する研究

    Get PDF
    In this thesis, we focus on Physically Unclonable Functions (PUFs), which are expected as one of the most promising cryptographic primitives for secure chip authentication. Generally, PUFbased authentication is achieved by two approaches: (A) using a PUF itself, which has multiple challenge (input) and response (output) pairs, or (B) using a cryptographic function, the secret key of which is generated from a PUF with a single challenge-response pair (CRP). We contribute to:(1) evaluate the security of Approach (A), and (2) improve the security of Approach (B). (1) Arbiter-based PUFs were the most feasible type of PUFs, which was used to construct Approach (A). However, Arbiter-based PUFs have a vulnerability; if an attacker knows some CRPs, she/he can predict the remaining unknown CRPs with high probability. Bistable Ring PUF (BR-PUF) was proposed as an alternative, but has not been evaluated by third parties. In this thesis, in order to construct Approach (A) securely, we evaluate the difficulty of predicting responses of a BR-PUF experimentally. As a result, the same responses are frequently generated for two challenges with small Hamming distance. Also, particular bits of challenges have a great impact on the responses. In conclusion, BR-PUFs are not suitable for achieving Approach (A)securely. In future work, we should discuss an alternative PUF suitable for secure Approach (A).(2) In order to achieve Approach (B) securely, a secret key ? generated from a PUF response?should have high entropy. We propose a novel method of extracting high entropy from PUF responses. The core idea is to effectively utilize the information on the proportion of ‘1’s including in repeatedly-measured PUF responses. We evaluate its effectiveness by fabricated test chips. As a result, the extracted entropy is about 1.72 times as large as that without the proposed method.Finally, we organize newly gained knowledge in this thesis, and discuss a new application of PUF-based technologies.電気通信大学201

    Voltage equalisation techniques for high capacitance device modules

    Get PDF
    Phd ThesisTraditionally, the electrochemical battery has been the prime medium by which electrical energy is stored for future use. Increasingly, the demands of modern systems such as electric vehicles, renewable energy, distributed generation, smart grid and others has stretched the development of new chemistries, materials and assembly techniques for electrochemical batteries. Additionally, some load profiles in these applications demand extremely high dynamic behaviour which is either undeliverable by conventional electrochemical batteries or is undesirably damaging to these technologies. As such, a family of electrochemical storage, known generally as supercapacitors or ultracapacitors, have been developed and implemented for such applications. In recent years advancements in electrochemical technology has led to hybridisation of high capacitance devices. Lithium-ion capacitors that are used in this work are, with their higher cell voltage and modern packaging, expected to be among the next emerging families of state-of-the-art electrical energy storage devices. The relatively low cell voltage of high capacitance cells requires them to be connected in series to attain a system level voltage. During charging and discharging, manufacturing tolerances between the cells results in voltage mismatch across the stack. Mismatched voltages are an inefficient use of the energy storage medium and can lead to dangerous failures in the cells. Several techniques exist to limit the variance in cell voltages of supercapacitors across a series connected stack. These range from simple systems which discharge the cells at higher voltages through resistors to more complex active converter systems which equalise the cell voltages through charge redistribution via a power electronic converter. Whilst the simpler schemes are effective they are very inefficient and as such are not suitable for use in many applications. A number of active converter voltage equalisation schemes have been proposed in literature, however, each of these equalisation schemes exhibit flaws which either makes them less desirable or less effective for a broad range of applications. Therefore, a new equalisation converter topology is proposed which is designed for greater equalisation effectiveness, modularity and size. The proposed equalisation converter differs from previously published equalisation schemes by allowing energy transfer between any pair of cells without the cumbersome multi-winding transformers employed in existing equalisation converters. The new equalisation scheme uses a bi-directional arrangement of MOSFET switches for galvanostatic isolation allowing the converter to be multiplexed to the stack. This arrangement allows the total size of the equalisation scheme to be reduced whilst maintaining performance.EPSRC

    Analysis and design considerations for high performance caches

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and, Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998."January 1998."Includes bibliographical references (leaf 43).by Helen H. Ruan.B.S.M.Eng

    A comparative study of synchronous and self-timed systolic array architectures.

    Get PDF
    This thesis examines systolic array architectures and their methods of control and communication synchronisation. Systolic array processors suffer from synchronisation problems associated with the clocking mechanism that causally restricts their scalability. To overcome this problem both return-to-zero (RTZ) and non-return-to zero (NRTZ) delay-insensitive self-timed (ST) techniques can be used to realise architectures that operate correctly in the presence of arbitrary delays at all levels in their design. As a consequence, RTZ and NRTZ versions of an existing systolic array architecture, namely the Single instruction Systolic Array (SISA), have been developed in order to investigate the potential for realising architecturally scaleable systolic arrays. The new architectures, called the RTZ and NRTZ ST-SISAs, have been compared with each other and against their synchronous counterpart to establish their relative trade-offs. The new designs exhibit several novel features including: variable length bit-serial data words, average case processing speeds dependent on data word length as well as computational complexity, a novel autonomous inter-processor data communication mechanism and architectural scalability independent of fabrication technology. This thesis introduces an implementation of the RTZ and NRTZ ST-SISA architectures, along with their performance and area characteristics. Guidelines have been developed from the resulting RTZ and NRTZ architectures allowing novel self-timed systolic architectures to be derived

    Digital Beamforming Implementation on an FPGA Platform

    Get PDF
    This work is part of UPC contribution to the CORPA (Cost-Optimised high Performance Active Receive Phase Array antenna for mobile terminals) project of ESA (European Space Agency)The objective of the work presented is to implement a Digital Beamforming (DBF) platform for an antenna array receiver designed for the S-DMB system. Our project deals with the design of antenna arrays from a hardware point of view, in contrast to other theo- retic studies regarding DBF algorithms. Hence, we will study practical aspects of DBF implementation such as signal quantization and required computational resources

    Options for Denormal Representation in Logarithmic Arithmetic

    Get PDF
    International audienceEconomical hardware often uses a FiXed-point Number System (FXNS), whose constant absolute precision is acceptable for many signal-processing algorithms. The almost-constant relative precision of the more expensive Floating-Point (FP) number system simplifies design, for example, by eliminating worries about FXNS overflow because the range of FP is much larger than FXNS for the same wordsize; however, primitive FP introduces another problem: underflow. The conventional Signed Logarithmic Number System (SLNS) offers similar range and precision as FP with much better performance (in terms of power, speed and area) for multiplication, division, powers and roots. Moderate-precision addition in SLNS uses table lookup with properties similar to FP (including underflow). This paper proposes a new number system, called the Denormal LNS (DLNS), which is a hybrid of the properties of FXNS and SLNS. The inspiration for DLNS comes from the denormal (aka subnormal) numbers found in IEEE-754 (that provide better, gradual underflow) and the μ-law often used for speech encoding; the novel DLNS circuit here allows arithmetic to be performed directly on such encoded data. The proposed approach allows customizing the range in which gradual underflow occurs. A wide gradual underflow range acts like FXNS; a narrow one acts like SLNS. The DLNS approach is most affordable for applications involving addition, subtraction and multiplication by constants, such as the Fast Fourier Transform (FFT). Simulation of an FFT application illustrates a moderate gradual underflow decreasing bit-switching activity 15% compared to underflow-free SLNS, at the cost of increasing application error by 30%. DLNS reduces switching activity 5% to 20% more than an abruptly-underflowing SLNS with one-half the error. Synthesis shows the novel circuit primarily consists of traditional SLNS addition and subtraction tables, with additional datapaths that allow the novel ALU to act on conventional SLNS as well as DLNS and mixed data, for a worst-case area overhead of 26%. For similar range and precision, simulation of Taylor-series computations suggest subnormal values in DLNS behave similarly to those in the IEEE-754 FP standard. Unlike SLNS, DLNS approach is quite costly for general (non-constant) multiplication, division and roots. To overcome this difficulty, this paper proposes two variation called Denormal Mitchell LNS (DMLNS) and Denormal Offset Mitchell LNS (DOMLNS), in which the well-known Mitchell's method makes the cost of general multiplication, division and roots closer to that of SLNS. Taylor-series computations suggest subnormal values in DMLNS and DOMLNS also behave similarly to those in the IEEE-754 FP standard. Synthesis shows that DMLNS and DOMLNS respectively have average area overheads of 25% and 17% compared to an equivalent SLNS 5-operation unit.Les circuits intégrés économiques utilisent souvent des systèmes de numération en virgule fixe, dont la précision absolue constante est acceptable pour de nombreux algorithmes de traitement du signal. La précision relative quasi-constante du système virgule flottante, plus coûteux, simplifie la conception, en éliminant notamment le risque de débordement par le haut, la dynamique du flottant étant bien plus grande qu'en virgule fixe. Cependant, le flottant primitif induit un autre problème : le débordement par le bas (underflow). Le système logarithmique conventionnel (SLNS) offre une dynamique et une précision similaire au flottant, pour des performances bien meilleures (en termes de consommation, vitesse et surface) pour la multiplication, la division, les puissances et les racines. L'addition en précision moyenne en SLNS est basées sur des accès à des tables, avec des propriétés similaires au flottant (incluant le débordement par le bas). Cet article propose trois variations autour d'un nouveau système de représentation des nombres, respectivement appelées Denormal LNS (DLNS), Denormal Mitchell LNS (DMLNS) et Denormal Offset Mitchell LNS (DOMLNS), qui sont toutes des hybrides des propriétés de la virgule fixe et du SLNS. L'inspiration de D(OM)LNS vient des nombre dénormaux (ou sous-normaux) de la norme IEEE-754, qui fournissent un débordement par le bas graduel, et le codage µ-law utilisé dans la transmission de la voix. Le nouveau circuit DLNS proposé permet de calculer directement sur les données codées. L'approche proposée permet d'ajuster l'intervalle dans lequel le débordement progressif intervient. Une plage large se comporte comme la virgule fixe, une étroite comme le SLNS. L'approche DLNS est la plus économique pour les applications impliquant des additions, soustractions et multiplications par des constantes, telles que les transformées de Fourier rapides (FFT). Notre première mise en {\oe}uvre s'appuie sur les blocs de base existant d SLNS. Des synthèses montrent que le nouveau circuit est constitué principalement des tables d'additions SLNS traditionnelles, avec des chemins de données supplémentaires qui permettent à la nouvelle unité d'opérer sur des données SLNS, DLNS ou mixtes, pour un surcoût en surface de 26% dans le pire cas. Contrairement au SLNS, cette réalisation de DLNS reste coûteuse pour la multiplication générique, la division et les racines. Pour surmonter cette difficulté, cet article propose les variations DMLNS et DOMLNS, pour lesquelles la méthode de Mitchell rapproche le coût des multiplications génériques, divisions et racines de leurs équivalents en SLNS. Des calculs sur des séries de Taylor suggèrent que les valeurs sous-normales en DMLNS et DOMLNS se comportent également de manière similaires à celles de la norme IEEE-754. Des synthèses montrent que DMLNS et DOMLNS offrent des surcoûts respectifs de 25% et 17% par rapport à une unité SLNS à 5 opérations équivalente

    VLSI design methodology

    Get PDF

    Design and Analysis of Improved Domino Logic with Noise Tolerance and High Performance

    Get PDF
    The demands of upcoming computing, as well as the challenges of nanometer-era of VLSI design necessitate new digital logic techniques and styles that are at the same time high performance, energy efficient and robust to noise and variation. Dynamic CMOS logic gates are broadly used to design high performance circuits due to their high speed. Conversely, the vital demerit of dynamic logic style is its high noise sensitivity. The main reason for this is the sub-threshold leakage current flowing through the pull down network. With continuous technology scaling, this problem is getting more and more severe. In this thesis, a new noise tolerant dynamic CMOS circuit technique is proposed. In the proposed work, we have enhanced the behavior of the domino CMOS logic. This technique also gets benefit in terms of delay and power. This thesis describes the new low power, noise tolerant and high speed domino logic technique and presents a comparison result of this logic with previously reported schemes. Simulation results prove that, in 180 nm CMOS technology when we used this logic style to realize wide fan-in logic gates, it could achieve maximum level of noise robustness as compared to its basic counterpart. In addition, the logic also works efficiently with sequential circuits. The feasibility of this new technique is demonstrated by means of a real hardware, we have built a custom test-chip in the UMC 180 nm process technology with an ALU core, using the proposed domino logic style for each design block. In this thesis, we have also described the design and implementation of this chip. In addition to this, we have also presented initial power and delay performance comparisons between the circuit level simulated ALU and test-chip implemented in the proposed domino logic style. Finally we conclude that, the thesis contributes a very efficient logic style for wide fan-in gates, which is not only noise robust but also energy efficient and high speed
    corecore