65 research outputs found

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Low-complexity interference variance estimation methods for coded multicarrier systems: application to SFN

    Get PDF
    For single-frequency network (SFN) transmission, the echoes coming from different transmitters are superimposed at the reception, giving rise to a frequency selective channel. Although multicarrier modulations lower the dispersion, the demodulated signal is sensitive to be degraded by inter-symbol interference (ISI) and inter-carrier interference (ICI). In view of this, we use channel coding in conjunction either with filter bank multicarrier (FBMC) modulation or with orthogonal frequency division multiplexing (OFDM). To deal with the loss of orthogonality, we have devised an interference-aware receiver that carries out a soft detection under the assumption that the residual interference plus noise (IN) term is Gaussian-distributed. To keep the complexity low, we propose to estimate the variance of the IN term by resorting to data-aided algorithms. Experimental results show that regardless of the method, FBMC provides a slightly better performance in terms of coded bit error rate than OFDM, while the spectral efficiency is increased when FBMC is considered.Peer ReviewedPostprint (published version

    Récepteur itératif pour les systèmes MIMO-OFDM basé sur le décodage sphérique : convergence, performance et complexité

    Get PDF
    Recently, iterative processing has been widely considered to achieve near-capacity performance and reliable high data rate transmission, for future wireless communication systems. However, such an iterative processing poses significant challenges for efficient receiver design. In this thesis, iterative receiver combining multiple-input multiple-output (MIMO) detection with channel decoding is investigated for high data rate transmission. The convergence, the performance and the computational complexity of the iterative receiver for MIMO-OFDM system are considered. First, we review the most relevant hard-output and soft-output MIMO detection algorithms based on sphere decoding, K-Best decoding, and interference cancellation. Consequently, a low-complexity K-best (LCK- Best) based decoder is proposed in order to substantially reduce the computational complexity without significant performance degradation. We then analyze the convergence behaviors of combining these detection algorithms with various forward error correction codes, namely LTE turbo decoder and LDPC decoder with the help of Extrinsic Information Transfer (EXIT) charts. Based on this analysis, a new scheduling order of the required inner and outer iterations is suggested. The performance of the proposed receiver is evaluated in various LTE channel environments, and compared with other MIMO detection schemes. Secondly, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared for different modulation orders and coding rates. Simulation results show that our proposed approaches achieve near optimal performance but more importantly it can substantially reduce the computational complexity of the system. From a practical point of view, fixed-point representation is usually used in order to reduce the hardware costs in terms of area, power consumption and execution time. Therefore, we present efficient fixed point arithmetic of the proposed iterative receiver based on LC-KBest decoder. Additionally, the impact of the channel estimation on the system performance is studied. The proposed iterative receiver is tested in a real-time environment using the MIMO WARP platform.Pour permettre l’accroissement de débit et de robustesse dans les futurs systèmes de communication sans fil, les processus itératifs sont de plus considérés dans les récepteurs. Cependant, l’adoption d’un traitement itératif pose des défis importants dans la conception du récepteur. Dans cette thèse, un récepteur itératif combinant les techniques de détection multi-antennes avec le décodage de canal est étudié. Trois aspects sont considérés dans un contexte MIMOOFDM: la convergence, la performance et la complexité du récepteur. Dans un premier temps, nous étudions les différents algorithmes de détection MIMO à décision dure et souple basés sur l’égalisation, le décodage sphérique, le décodage K-Best et l’annulation d’interférence. Un décodeur K-best de faible complexité (LC-K-Best) est proposé pour réduire la complexité sans dégradation significative des performances. Nous analysons ensuite la convergence de la combinaison de ces algorithmes de détection avec différentes techniques de codage de canal, notamment le décodeur turbo et le décodeur LDPC en utilisant le diagramme EXIT. En se basant sur cette analyse, un nouvel ordonnancement des itérations internes et externes nécessaires est proposé. Les performances du récepteur ainsi proposé sont évaluées dans différents modèles de canal LTE, et comparées avec différentes techniques de détection MIMO. Ensuite, la complexité des récepteurs itératifs avec différentes techniques de codage de canal est étudiée et comparée pour différents modulations et rendement de code. Les résultats de simulation montrent que les approches proposées offrent un bon compromis entre performance et complexité. D’un point de vue implémentation, la représentation en virgule fixe est généralement utilisée afin de réduire les coûts en termes de surface, de consommation d’énergie et de temps d’exécution. Nous présentons ainsi une représentation en virgule fixe du récepteur itératif proposé basé sur le décodeur LC K-Best. En outre, nous étudions l’impact de l’estimation de canal sur la performance du système. Finalement, le récepteur MIMOOFDM itératif est testé sur la plateforme matérielle WARP, validant le schéma proposé

    Advanced receivers for distributed cooperation in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are rapidly deployable wireless communications systems, operating with minimal coordination in order to avoid spectral efficiency losses caused by overhead. Cooperative transmission schemes are attractive for MANETs, but the distributed nature of such protocols comes with an increased level of interference, whose impact is further amplified by the need to push the limits of energy and spectral efficiency. Hence, the impact of interference has to be mitigated through with the use PHY layer signal processing algorithms with reasonable computational complexity. Recent advances in iterative digital receiver design techniques exploit approximate Bayesian inference and derivative message passing techniques to improve the capabilities of well-established turbo detectors. In particular, expectation propagation (EP) is a flexible technique which offers attractive complexity-performance trade-offs in situations where conventional belief propagation is limited by computational complexity. Moreover, thanks to emerging techniques in deep learning, such iterative structures are cast into deep detection networks, where learning the algorithmic hyper-parameters further improves receiver performance. In this thesis, EP-based finite-impulse response decision feedback equalizers are designed, and they achieve significant improvements, especially in high spectral efficiency applications, over more conventional turbo-equalization techniques, while having the advantage of being asymptotically predictable. A framework for designing frequency-domain EP-based receivers is proposed, in order to obtain detection architectures with low computational complexity. This framework is theoretically and numerically analysed with a focus on channel equalization, and then it is also extended to handle detection for time-varying channels and multiple-antenna systems. The design of multiple-user detectors and the impact of channel estimation are also explored to understand the capabilities and limits of this framework. Finally, a finite-length performance prediction method is presented for carrying out link abstraction for the EP-based frequency domain equalizer. The impact of accurate physical layer modelling is evaluated in the context of cooperative broadcasting in tactical MANETs, thanks to a flexible MAC-level simulato

    Proceedings of the 35th WIC Symposium on Information Theory in the Benelux and the 4th joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, the Netherlands May 12-13, 2014

    Get PDF
    Compressive sensing (CS) as an approach for data acquisition has recently received much attention. In CS, the signal recovery problem from the observed data requires the solution of a sparse vector from an underdetermined system of equations. The underlying sparse signal recovery problem is quite general with many applications and is the focus of this talk. The main emphasis will be on Bayesian approaches for sparse signal recovery. We will examine sparse priors such as the super-Gaussian and student-t priors and appropriate MAP estimation methods. In particular, re-weighted l2 and re-weighted l1 methods developed to solve the optimization problem will be discussed. The talk will also examine a hierarchical Bayesian framework and then study in detail an empirical Bayesian method, the Sparse Bayesian Learning (SBL) method. If time permits, we will also discuss Bayesian methods for sparse recovery problems with structure; Intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector problem

    Architectures multi-Asip pour turbo récepteur flexible

    Get PDF
    Rapidly evolving wireless standards use modern techniques such as turbo codes, Bit Interleaved coded Modulation (BICM), high order QAM constellation, Signal Space Diversity (SSD), Multi-Input Multi-Output (MIMO) Spatial Multiplexing (SM) and Space Time Codes (STC) with different parameters for reliable high rate data transmissions. Adoption of such techniques in the transmitter can impact the receiver architecture in three ways: (1) the complex processing related to advanced techniques such as turbo codes, encourage to perform iterative processing in the receiver to improve error rate performance (2) to satisfy high throughput requirement for an iterative receiver, parallel processing is mandatory and finally (3) to allow the support of different techniques and parameters imposed, programmable yet high throughput hardware processing elements are required. In this thesis, to address the high throughput requirement with turbo processing, first of all a study of parallelism on turbo decoding is extended for turbo demodulation and turbo equalization. Based on the results acquired from the parallelism study a flexible high throughput heterogeneous multi-ASIP NoC based unified turbo receiver is proposed. The proposed architecture fulfils the target requirements in a way that: (a) Application Specific Instruction-set Processor (ASIP) exploits metric generation level parallelism and implements the required flexibility, (b) throughputs beyond the capacity of single ASIP in a turbo process are achieved through multiple ASIP elements implementing sub-block parallelism and shuffled processing and finally (c) Network on Chip is used to handle communication conflicts during parallel processing of multiple ASIPs. In pursuit to achieve a hardware model of the proposed architecture two ASIPs are conceived where the first one, namely EquASIP, is dedicated for MMSE-IC equalization and provides a flexible solution for multiple MIMO techniques adopted in multiple wireless standards with a capability to work in turbo equalization context. The second ASIP, named as DemASIP, is a flexible demapper which can be used in MIMO or single antenna environment for any modulation till 256-QAM with or without iterative demodulation. Using available TurbASIP and NoC components, the thesis concludes on an FPGA prototype of heterogeneous multi-ASIP NoC based unified turbo receiver which integrates 9 instances of 3 different ASIPs with 2 NoCs.Les normes de communication sans fil, sans cesse en évolution, imposent l'utilisation de techniques modernes telles que les turbocodes, modulation codée à entrelacement bit (BICM), constellation MAQ d'ordre élevé, diversité de constellation (SSD), multiplexage spatial et codage espace-temps multi-antennes (MIMO) avec des paramètres différents pour des transmissions fiables et de haut débit. L'adoption de ces techniques dans l'émetteur peut influencer l'architecture du récepteur de trois façons: (1) les traitement complexes relatifs aux techniques avancées comme les turbocodes, encourage à effectuer un traitement itératif dans le récepteur pour améliorer la performance en termes de taux d'erreur (2) pour satisfaire l'exigence de haut débit avec un récepteur itératif, le recours au parallélisme est obligatoire et enfin (3) pour assurer le support des différentes techniques et paramètres imposées, des processeurs de traitement matériel flexibles, mais aussi de haute performance, sont nécessaires. Dans cette thèse, pour répondre aux besoins de haut débit dans un contexte de traitement itératif, tout d'abord une étude de parallélisme sur le turbo décodage a été étendue aux applications de turbo démodulation et turbo égalisation. Partant des résultats obtenus à partir de l'étude du parallélisme, un récepteur itératif unifié basé sur un modèle d'architecture multi-ASIP hétérogène intégrant un réseau sur puce (NoC) a été proposé. L'architecture proposée répond aux exigences visées d'une manière où: (a) le concept de processeur à jeu d'instruction dédié à l'application (ASIP) exploite le parallélisme du niveau de génération de métriques et met en oeuvre la flexibilité nécessaire, (b) les débits au-delà de la capacité d'un seul ASIP dans un processus itératif sont obtenus au moyen de multiples ASIP implémentant le parallélisme de sous-blocs et le traitement combiné et enfin (c) le concept de réseau sur puce (NoC) est utilisé pour gérer les conflits de communication au cours du traitement parallèle itératif multi-ASIP. Dans le but de parvenir à un modèle matériel de l'architecture proposée, deux ASIP ont été conçus où le premier, nommé EquASIP, est dédié à l'égalisation MMSE-IC et fournit une solution flexible pour de multiples techniques multi-antennes adoptés dans plusieurs normes sans fil avec la capacité de travailler dans un contexte de turbo égalisation. Le deuxième ASIP, nommé DemASIP, est un démappeur flexible qui peut être utilisé dans un environnement multi-antennes et pour tout type de modulation jusqu'à MAQ-256 avec ou sans démodulation itérative. En intégrant ces ASIP, en plus des NoC et TurbASIP disponibles à Télécom Bretagne, la thèse conclut sur un prototype FPGA d'un récepteur itératif unifié multi-ASIP qui intègre 9 coeurs de 3 différents types d'ASIP avec 2 NoC

    Physical-Layer Cooperation in Coded OFDM Relaying Systems

    Get PDF
    Mobile communication systems nowadays require ever-increasing data rate and coverage of wide areas. One promising approach to achieve this goal is the application of cooperative communications enabled by introducing intermediate nodes known as relays to support the transmission between terminals. By processing and forwarding the receive message at the relays, the path-loss effect between the source and the destination is mitigated. One major limit factor for relay assisted communications is that a relay cannot transmit and receive using the same physical resources. Therefore, a half-duplex constraint is commonly assumed resulting in halved spectral efficiency. To combat this drawback, two-way relaying is introduced, where two sources exchange information with each. On the other hand, due to the physical limitation of the relays, e.g., wireless sensor nodes, it's not possible to implement multiple antennas at one relay, which prohibits the application of multiple-input multiple-output (MIMO) techniques. However, when treating multiple relays as a cluster, a virtual antenna array is formed to perform MIMO techniques in a distributed manner. %This thesis aims at designing efficient one-way and two-way relaying schemes. Specifically, existing schemes from the literature are improved and new schemes are developed with the emphasis on coded orthogonal frequency division multiplexing (OFDM) transmissions. Of special interest is the application of physical-layer network coding (PLNC) for two-phase two-way relaying. In this case, a network coded message is estimated from the superimposed receive signal at the relay using PLNC schemes. The schemes are investigated based on a mutual information analysis and their performance are improved by a newly proposed phase control strategy. Furthermore, performance degradation due to system asynchrony is mitigated depending on different PLNC schemes. When multiple relays are available, novel cooperation schemes allowing information exchange within the relay cluster are proposed that facilitate distributed MIMO reception and transmission. Additionally, smart signaling approaches are presented to enable the cooperation at different levels with the cooperation overhead taken into account adequately in system performance evaluation
    • …
    corecore